
Install HSP-8 Driver for WinNT

The INSTHSP program can be used to either install or remove the re-
quired files for using the HSP-8 with Windows NT.

To install:
1. Log into WinNT with administrator privledges.
2. Make a temporary subdirectory.
3. Put the following files into the temporary subdirectory:

INSTHSP.EXE the installer program.
HSPCOMNT.DLL the 32bit API.
HSPVDD.DLL 16 to 32bit converter.
HSPNT16.DLL the 16 bit API.

4. Open a command prompt window.
5. At the prompt type insthsp install (see below for other options).
6. After installation you may delete the temporary directory.

 To install HSP device driver and required files for both 16 and 32 bit API:
insthsp install options

options may be:
LPTx = only LPTx will be used, x=1,2 or 3

 OR

To install HSP device driver and required files for only 16 bit API:
insthsp install16 options

OR

To install HSP device driver and required files for only 32 bit API:
insthsp install32 options

OR

To remove HSP device driver:
insthsp remove

The HSP-8, an Overview 3

Files on Diskette

Required Files
HSPNT20.ZIP This file conatins all files needed to install and interface.

Files Required to Install
INSTHSP.EXE The installer program.
HSPCOMNT.DLL The 32bit API.
HSPVDD.DLL The 16bit to 32bit converter.
HSPNT16.DLL The 16 bit API.

Files Required to Use HSP
These files are copied to WINDOWS\SYSTEM or
 WINDOWS\SYSTEM32 by the INSTHSP program.
HSPCOMNT.DLL The 32bit API.
HSPVDD.DLL The 16bit to 32bit converter.
HSPNT16.DLL The 16 bit API.

Files Required to Write 32 bit C Programs which use HSP
HSPCOMNT.H The 32bit API function declarations.
HSPCOMNT.LIB Link this to your application.
HSPCOMNT.DEF DEF file for the 32bit API.

Files Required to Write 16 bit C Programs which use HSP
HSPNT16.H The 16 bit API function declarations.
HSPNT16.LIB Link this to your application.

The HSP-8, an Overview 4

HSPCOMNT.DLL Software Interface

Overview

The HSP Communications device driver (HSPCOMNT.DLL) is written in
"C" and compiled as a 32 bit Dynamic Link Library (dll) file for use with
Windows NT. Although the function names are the same, the device driv-
ers for Windows NT and Windows 98 are different so the target platform
should be known or defined before using the driver.

To use the HSP Communication functions in your software, include the
supplied hspcomnt.h file in the C source files. Link the file hspcomnt.lib
with your application. The application must be able to locate the
HSPCOMNT.DLL file at run time.

HSPCOMNT.DLL Software Interface 5

Typical use:
STEP 1 - Initialize
.
 int HspLoadStatus;
.
 //open hsp driver
 HspLoadStatus = HspCommInit(0);
 if(HspLoadStatus==0){
 HspSetScanTime(100); // scan time set to 10.0 ms

// scan time must be set or it will default
// to zero (meaning no scanning)

 HspStartScan();
 }

STEP 2 - define channels

HspDefineChannel(1,"t1+t2");
HspDefineChannel(2,"max(t1+t2)");
HspDefineChannel(3,"min(t1+t2)");

STEP 3 - read values
float values[3];
.
HspReadChannel(1,&values[0]); // pass adr of space for float
HspReadChannel(2,&values[1]); // pass adr of space for float
HspReadChannel(3,&values[2]); // pass adr of space for float
.

// display or store values
.
.
// to reset max/min/tir functions used in formulae call HspResetMM()
if(ResetPushedMessage)
 HspResetMM();

HSPCOMNT.DLL Software Interface 6

Communication Functions

Overview
There is one function for each of the HSP-8 commands.
To use the functions, call the function with its arguments. The function
will issue the proper command code and arguments to the HSP-8. The
function will return the HSP-8’s response.

Status Code
All HSP-8 functions return a status code which indicates the success or
failure of the command execution. The status code is returned as the value
of the function. The functions that return values in addition to the status
code require arguments which are a pointer to a place to put the returned
value.
The following rules pertain to all functions:
All functions return an integer which will be:
zero If the command was completed successfully.
-1 If unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix
C)

General Arguments
When functions require a channel number as an argument the channel
number must be between 1 and 32.
When functions require a transducer number as an argument the
transducer number must be between 1 and 32. (Transducer numbers
greater than 8 will be accepted but are only meaningful if slave HSP-8s
are installed.)

General Return Values
All functions return the status as the function return value. When other val-
ues must be returned the calling routine must supply a pointer to a vari-
able which will have the return value stored into it.

Floating Point Arguments
This DLL only supports FP_IMODE_NATIVE, which is the default float-
ing point input mode. Changing the floating point input mode with the
HspSetFpIn function will cause unpredictable results.

Floating Point Return Values
This DLL only supports FP_OMODE_NATIVE, which is the default
floating point input mode. Changing the floating point input mode with
the HspSetFpOut function will cause unpredictable results.

HSPCOMNT.DLL Software Interface 7

���������	
���

����

Description Searches all attached LPT ports for an HSP-8. If found, opens a link to the
HSP-8.

In C int HspCommInit(int dummy);

In BASIC Declare Function HspCommInit Lib "hspcomnt" (_
 ByVal dummy As Integer _
) As Integer

dummy Not used.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks This function or HspCommInitEx must be the first function called before
any of the other functions in HSPCOMNT.DLL are used.

HSPCOMNT.DLL Software Interface 8

���������	
���

������

Description Searches only the specified LPT port for an HSP-8. If found, opens a link
to the HSP-8.

In C int HspCommInitEx(int lpt, int dummy);

In BASIC Declare Function HspCommInitEx Lib "hspcomnt" (_
 ByVal lpt As Integer _
 ByVal dummy As Integer _
) As Integer

lpt Lpt port where HSP-8 is attached.
dummy Not used.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

HSPCOMNT.DLL Software Interface 9

���������	
��
����

Description Controls the display of an error dialog box when an HSP-8 function re-
turns an error.

In C void HspMsgBox(int enable);

In BASIC Declare Function HspMsgBox Lib "hspcomnt" (_
 ByVal enable As Integer _
) As Integer

enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The HspMsgBox function enables/disables a dialog box which appears
whenever there is an error detected in an hsicomm command. The dialog
box translates the interface error code into a brief descriptive error mes-
sage.

The enabling/disabling of the error dialog box does not affect the error
codes returned by the other functions.

HSPCOMNT.DLL Software Interface 10

��������������
�����
�

Description Controls the display of parallel port driver startup diagnostic messages.
This is not generally useful, except as an aid in diagnosing problems with
the parallel port communications.

In C void EppInstallMsg(int enable);

In BASIC Declare Function EppInstallMsg Lib "hspcomnt" (_
 ByVal enable As Integer _
) As Integer

enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The EppInstallMsg function enables/disables a series of dialog boxes
which report on the progress of detecting the HSP-8 connected through a
LPT port. The information displayed by these is be useful in diagnosing
the communication problems.

HSPCOMNT.DLL Software Interface 11

�����������������
�

Description Controls the display of an error dialog box when the parallel port commu-
nication driver returns an error.

In C void EppDiagMsg(int enable);

In BASIC Declare Function EppDiagMsg Lib "hspcomnt" (_
 ByVal enable As Integer _
) As Integer

enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The EppDiagMsg function enables/disables a dialog box which appears
whenever there is an error detected in the communication with the HSP-8.
This dialog box provides more specific communication error descriptions
than the HspMsgBox, however, this dialog box is only for communication
errors. The dialog box translates the interface error code into a brief de-
scriptive error message.

The enabling/disabling of the error dialog box does not affect the error
codes returned by the other functions.

HSPCOMNT.DLL Software Interface 12

����������	
����

Description Gets the version number of the Dynamic Link Library.

In C int HspDLL(char * VersionString);

In BASIC Declare Function HspDLL Lib "hspcomnt" (_
 ByVal VersionString As String, _
) As Integer

VersionString Version number of the Dynamic Link Library.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Preliminary

HSPCOMNT.DLL Software Interface 13

���������	
����������

Description Enables HSP-8 scanning of MAX/MIN/TIR elements used in channel for-
mulae.

In C int HspStartScan(void);

In BASIC Declare Function HspStartScan Lib "hspcomnt" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks

HSPCOMNT.DLL Software Interface 14

���������	
���������

Description Disables HSP-8 scanning of MAX/MIN/TIR elements used in channel for-
mulae.

In C int HspStopScan(void);

In BASIC Declare Function HspStopScan Lib "hspcomnt" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function disables the scanning of formulae which contain MAX,
MIN or TIR functions. The functions will be unaffected by changes in
their arguments.

HSPCOMNT.DLL Software Interface 15

���������	
��������������

Description Defines an HSP-8 channel formula.

In C int HspDefineChannel(int channel,char *formula);

In BASIC Declare Function HspDefineChannel Lib "hspcomnt" (_
 ByVal channel As Integer, _
 ByVal formula As String _
) As Integer

channel A channel number.
formula The formula string.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument channel must be between 1 and 96, inclusive. This function
will define a formula for a channel. The formula argument is a pointer to a
string which contains a valid formula. The formulae are supplied to the
HSP-8 in the form of an ASCII string terminated by a null byte. See the
description of formulae in the section HSP-8 FORMULA SYNTAX for
details of allowed formats.

HSPCOMNT.DLL Software Interface 16

���������	
��������
���

Description Gets the formula string for the specified channel.

In C int HspReadFormula(int channel, char *formula);

In BASIC Declare Function HspReadFormula Lib "hspcomnt" (_
 ByVal channel As Integer, _
 ByRef formula As String _
) As Integer

channel A channel number.
formula Points *formula to formula string in the rx_buffer.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function will set the pointer (char **formula) to point to the ASCIIZ
string (an ASCII string terminated by a null byte) which is the formula for
the specified channel.
Note: This function does not copy the string to a destination string. The
formula string is located in the receive buffer and formula points to the re-
ceive buffer location.
The formula argument is a pointer to a string which contains a valid for-
mula. See the description of formulae in the section HSP-8 FORMULA
SYNTAX for details of allowed formats.

HSPCOMNT.DLL Software Interface 17

���������	
����������������

Description Erases the formulae in all HSP-8 channels.

In C int HspClearAllChannels(void)

In BASIC Declare Function HspClearAllChannels Lib "hspcomnt" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

HSPCOMNT.DLL Software Interface 18

���������	
�������������

Description Erases the formula for the specified HSP-8 channels.

In C int HspClearChannel(int channel);

In BASIC Declare Function HspClearChannel Lib "hspcomnt" (_
 ByVal channel As Integer _
) As Integer

channel A channel number.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks

HSPCOMNT.DLL Software Interface 19

���������	
������������

Description Computes the value of the specified channel and returns the value.

In C int HspReadChannel(int channel, float *value);

In BASIC Declare Function HspReadChannel Lib "hspcomnt" (_
 ByVal channel As Integer, _
 ByRef value As Single _
) As Integer

channel A channel number.
value The current value of the channel.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks

HSPCOMNT.DLL Software Interface 20

���������	
����� ���

Description Sets the zero offset for the specified channel.

In C int HspSetCzero(int channel, float *zero);

In BASIC Declare Function HspSetCzero Lib "hspcomnt" (_
 ByVal channel As Integer, _
 ByRef zero As Single _
) As Integer

channel A channel number.
zero The new zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The channel’s zero offset value is added to the channel value when the
HspReadChannel function is used and when the channel is used in a for-
mula for another channel.

HSPCOMNT.DLL Software Interface 21

���������	
������ ���

Description Gets the zero offset for the specified channel.

In C int HspReadCzero(int channel, float *zero);

In BASIC Declare Function HspReadCzero Lib "hspcomnt" (_
 ByVal channel As Integer, _
 ByRef zero As Single _
) As Integer

channel A channel number.
zero The current zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The channel’s zero offset value is added to the channel value when the
HspReadChannel function is used and when the channel is used in a for-
mula for another channel.

All functions return the status as the function return value. When other val-
ues must be returned the calling routine must supply a pointer to a vari-
able which will have the return value stored into it.

HSPCOMNT.DLL Software Interface 22

���������	
���
����

Description Resets all MIN/MAX/TIR elements used in channel formulae.

In C int HspResetMM(void)

In BASIC Declare Function HspResetMM Lib "hspcomnt" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks

HSPCOMNT.DLL Software Interface 23

���������	
������!��

Description Gets the current value of the specified probe.

In C int HspReadLvdt(int probe, float *value);

In BASIC Declare Function HspReadLvdt Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef value As Single _
) As Integer

probe A probe number.
value The probe value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The value is determined by:

value = fsv * amplifier value + offset

Where the amplifier value ranges from -4.096 to +4.095.

HSPCOMNT.DLL Software Interface 24

���������	
����"�
!

Description Sets the full scale value of the specified probe amplifier.

In C int HspSetTfsv(int probe, float *fsv)

In BASIC Declare Function HspSetTfsv Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef fsv As Single _
) As Integer

probe A probe number.
fsv The new full scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.

See HspReadLvdt for explaination of how this affects readings.

HSPCOMNT.DLL Software Interface 25

���������	
�����"�
!

Description Gets the current full scale value of the specified probe amplifier.

In C int HspReadTfsv(int probe, float *fsv)

In BASIC Declare Function HspReadTfsv Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef fsv As Single _
) As Integer

probe An probe number.
fsv The current full scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.

See HspReadLvdt for explaination of how this affects readings.

HSPCOMNT.DLL Software Interface 26

���������	
����" ���

Description Sets the zero offset of the specified probe amplifier.

In C int HspSetTzero(int probe, float *zero);

In BASIC Declare Function HspSetTzero Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef zero As Single _
) As Integer

probe A probe number.
zero The new probe amplifier zero value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.

See HspReadLvdt for explaination of how this affects readings.

HSPCOMNT.DLL Software Interface 27

���������	
�����" ���

Description Gets the current zero offset for the specified probe amplifier.

In C int HspReadTzero(int probe, float *zero);

In BASIC Declare Function HspReadTzero Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef zero As Single _
) As Integer

probe A probe number.
zero The current zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.

See HspReadLvdt for explaination of how this affects readings.

HSPCOMNT.DLL Software Interface 28

���������	
�����������

Description Gets the specified analog input value.

In C int HspReadAnalog(int analog, float *value);

In BASIC Declare Function HspReadAnalog Lib "hspcomnt" (_
 ByVal analog As Integer, _
 ByRef value As Single _
) As Integer

analog An analog number.
value The analog value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function reads the current value of an analog input.
The HSP-8 has no analog inputs. This function returns a value which re-
flects the state of the RTS line on the RS-232 connector.

HSPCOMNT.DLL Software Interface 29

���������	
������
!

Description Sets full scale value for the specified analog input.

In C int HspSetAfsv(int analog, float *fsv)

In BASIC Declare Function HspSetAfsv Lib "hspcomnt" (_
 ByVal analog As Integer, _
 ByRef fsv As Single _
) As Integer

analog An analog number.
fsv The analog full scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function sets the full scale value of an analog input.

See Remarks for HspReadAnalog

HSPCOMNT.DLL Software Interface 30

���������	
�������
!

Description This function gets the full scale value of an analog input.

In C int HspReadAfsv(int analog, float * fsv);

In BASIC Declare Function HspReadAfsv Lib "hspcomnt" (_
 ByVal analog As Integer, _
 ByRef fsv As Single _
) As Integer

analog An analog number.
fsv The analog full scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function reads the full scale value of an analog input.

See Remarks for HspReadAnalog

HSPCOMNT.DLL Software Interface 31

���������	
����� ���

Description Sets the zero offset for the specified analog input.

In C int HspSetAzero(int analog, float *zero);

In BASIC Declare Function HspSetAzero Lib "hspcomnt" (_
 ByVal analog As Integer, _
 ByRef zero As Single _
) As Integer

analog An analog number.
zero Pointer to the analog zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The zero offset is added to the analog input value when the read analog
function is used or when the analog input is used in a formula.

See Remarks for HspReadAnalog

HSPCOMNT.DLL Software Interface 32

���������	
������ ���

Description Gets the zero offset for the specified analog input.

In C int HspReadAzero(int analog, float *zero);

In BASIC Declare Function HspReadAzero Lib "hspcomnt" (_
 ByVal analog As Integer, _
 ByRef zero As Single _
) As Integer

analog An analog number.
zero Pointer to theanalog zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks See Remarks for HspReadAnalog

HSPCOMNT.DLL Software Interface 33

���������	
�����!��#���

Description Sets probe gain resistors on the specified probe amplifier.

In C int HspSetLvdtGain(int probe, unsigned char Rf, unsigned char Ri);

In BASIC Declare Function HspSetLvdtGain Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByVal Rf As Byte,_
 ByVal Ri As Byte_
) As Integer

probe A probe number.
Rf Feedback resistor code
Ri Input resistor code

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The feedback resistor code, Rf, must be in the range 0 to 255.
The input resistor code, Ri, must be in the range 0 to 255.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 34

���������	
������!��#���

Description Gets probe gain resistors on the specified probe amplifier.

In C int HspReadLvdtGain(int probe, unsigned char *Rf, unsigned char
*Ri);

In BASIC Declare Function HspReadLvdtGain Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef Rf As Byte,_
 ByRef Ri As Byte_
) As Integer

probe A probe number.
Rf Feedback resistor code.
Ri Input resistor code.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The feedback resistor code, Rf, will be in the range 0 to 255.
The input resistor code, Ri, will be in the range 0 to 255.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 35

���������	
�����!������

Description Sets fine gain trim on the specified probe amplifier.

In C int HspSetLvdtFine(int probe, short int fine);

In BASIC Declare HspSetLvdtFine Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByVal fine As Integer_
) As Integer

probe A probe number.
fine The gain fine adjust value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The fine argument must be in the range -100 to +100.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 36

���������	
������!������

Description Gets fine gain trim on the specified probe amplifier.

In C int HspReadLvdtFine(int probe, short int * fine);

In BASIC Declare Function HspReadLvdtFine Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef fine As Integer_
) As Integer

probe A probe number.
fine The current fine gain trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The returned value of fine will be in the range -100 to +100.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 37

���������	
�����!��$���

Description Sets null trim on the specified probe amplifier.

In C int HspSetLvdtNull(int probe, short int offset);

In BASIC Declare Function HspSetLvdtNull Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByVal offset As Integer_
) As Integer

probe A probe number.
offset The new offset zero trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The offset argument must be in the range -100 and +100.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 38

���������	
������!��$���

Description Gets null trim on the specified probe amplifier.

In C int HspReadLvdtNull(int probe, short int *offset);

In BASIC Declare Function HspReadLvdtNull Lib "hspcomnt" (_
 ByVal probe As Integer, _
 ByRef offset As Integer, _
) As Integer

probe A probe number.
offset The current offset zero trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The offset argument must be in the range -100 and +100.

See Section on Adjusting Gain.

HSPCOMNT.DLL Software Interface 39

���������	
���!�����%������

Description Commits the current calibration to non-volatile memory.

In C HspSaveCalibration(short int *savestatus);

In BASIC Declare Function SaveCalibration Lib "hspcomnt" (_
 ByRef savestatus As Integer_
) As Integer

savestatus The status of the save request is stored here.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Save calibration to eeprom.

savestatus = 0 means saving of calibration data has started
savestatus = any other value means the firmware was unable

to start the save operation (most likely
a previous save has not yet completed)

HSPCOMNT.DLL Software Interface 40

���������	
�#����!������

Description Checks for non-volatile memory write complete.

In C int HspGetSaveStatus(short int *savecomplete, short int *saveerror);

In BASIC Declare Function HspGetSaveStatus Lib "hspcomnt" (_
 ByRef savecomplete As Integer, _
 ByRef saveerror As Integer_
) As Integer

savecomplete See Remarks.
saveerror See Remarks.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks savecomplete = 1 means saving is done
and saveerror = 0 means saving was successful

 savecomplete = 0 means saving is in progress
 and saveerror has no meaning

HSPCOMNT.DLL Software Interface 41

���������	
��������"�
�

Description Sets scanning period for MAX, MIN and TIR functions.

In C int HspSetScanTime(short int time);

In BASIC Declare Function HspSetScanTime Lib "hspcomnt" (_
 ByVal time As Integer _
) As Integer

time New scanning period value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument time is in units of tenth’s of milliseconds.

HSPCOMNT.DLL Software Interface 42

���������	
�#������"�
�

Description Gets the scanning period for MAX, MIN and TIR functions.

In C int HspGetScanTime(short int *time);

In BASIC Declare Function HspGetScanTime Lib "hspcomnt" (_
 ByRef time As Integer _
) As Integer

time The current scanning period value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument time is in units of tenth’s of milliseconds.
Example: A value of 100 means 10.0 milliseconds.

HSPCOMNT.DLL Software Interface 43

���������	
�#����������

Description Gets the current state of the HSP scan flag.

In C int HspGetScanFlag(short int *flag);

In BASIC Declare Function HspGetScanFlag Lib "hspcomnt" (_
 ByRef flag As Integer _
) As Integer

flag Read the current scan flag setting.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Read the current scan flag setting.

HSPCOMNT.DLL Software Interface 44

���������	
�����������

Description Gets probe amplifier values as signed integers.

In C int HspReadDirect(int count, unsigned char *list, short int ** values);

In BASIC Declare Function HspReadDirect Lib "hspcomnt" (_
 ByVal count As Integer, _
 ByRef list As Byte, _
 ByRef values As Integer _
) As Integer

count Number of probe’s to be read.
list Pointer to a list of probe numbers.
values Pointer to an integer pointer. The calling routine passes the address
of a variable where the pointer to the table of values is to be stored.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe numbers are 8 bit integers starting at "0" through "7" for the
first HSP-8, "8" through "15" for the second HSP-8, etc. The foot switch
input is "96".

Each of the returned integers or values will be in the range of -8192 to
+8191.

See Remarks on ReadDirectCopy function.

HSPCOMNT.DLL Software Interface 45

���������	
��������������&

Description Reads the requested amplifiers and copies the results to the buffer pro-
vided by the calling routine.

In C int HspReadDirectCopy(int count, unsigned char *list, short int *val-
ues);

In BASIC Declare Function HspReadDirectCopy Lib "hspcomnt" (_
 ByVal count As Integer, _
 ByRef list As Byte, _
 ByRef values As Integer _
) As Integer

count Number of probe’s to be read.
list Pointer to the list of probe numbers.
values Pointer to buffer where values are to be stored.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe numbers are 8 bit integers starting at "0" through "7" for the
first HSP-8, "8" through "15" for the second HSP-8, etc. The foot switch
input is "96".

Each of the returned integers or values will be in the range of -8192 to
+8191.
The buffer must be large enough to hold count 16 bit integers.

The HspReadDirectCopy and HspReadDirect functions do the same
thing, except for how the results are transferred back to the calling pro-
gram. The HspReadDirectCopy function is useful when using some BA-
SIC compilers which provide no argument passing option which is
equivalent to the C int **values argument.

HSPCOMNT.DLL Software Interface 46

���������	
��������!�

Description Sets burst average length.

In C int HspSetAdcAvg(short int NumberToAvg);

In BASIC Declare Function HspSetAdcAvg Lib "hspcomnt" (_
 ByVal NumberToAvg As Integer _
) As Integer

NumberToAvg New burst average length.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Each amplifier or analog request will be read NumberToAvg times. The re-
turned value will be the average of these readings. Each of the readings
are very closely spaced in time (about 5us per reading).

At startup the burst average is set to 4.

HSPCOMNT.DLL Software Interface 47

���������	
��������!�

Description Sets running average length.

In C int HspSetRunAvg(short int NumberToAvg);

In BASIC Declare Function HspSetRunAvg Lib "hspcomnt" (_
 ByVal NumberToAvg As Integer _
) As Integer

NumberToAvg New running average length.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The running average will accumulate one reading per scan period up to
NumberToAvg, at which time it will discard the oldest value. When the
value of a channel is requested, the average of the accumulated values for
that channel will be returned. The running average only effects values
from HspReadChannel. It has no effect on HspReadDirect or
HspReadLvdt.

At startup the running average is set to 1.

HSPCOMNT.DLL Software Interface 48

Adjusting Probe Amplifier Gain

Each probe amplifier has two software adjustable resistors which together
set the voltage gain of the probe amplifier. The two resistors are referred
to as the input resistor (Ri) and the feedback resistor (Rf). The probe am-
plifier gain is determined by the following formula:

Gain = 1 + Rf / Ri

Although both resistors are adjustable, it is recommended that the input re-
sistor (Ri) be set and left at the value of 50. This allows the gain to be var-
ied from a minimum of 1 (Rf=0) to a maximum of a little more than 6
(Rf=255). This range will accomodate most probes which are used with
the probe amplifier. If high output probes are used in combination with a
high Gain setting, the detector will overload and cause signal polarity re-
versal. This will not cause any permanent damage, but the resulting read-
ings will be erroneous.

The functions HspSetLvdtGain and HspReadLvdtGain are used to ma-
nipulate the Rf and Ri values on a per amplifier basis. The functions
HspSetLvdtFine and HspReadLvdtFine manipulate a fine gain adjust
factor, which is useful if it is desired to set a gain between the steps al-
lowed by the setting of Rf.

The HspSetLvdtNull and HspReadLvdtNull are useful for removing
any residual reading that exists with the probe amplifier inputs open cir-
cuit.

Once the calibration is satisfactory, it can be made the power-up default
by using the HspSaveCalibration function. This function will commit the
calibration values to a non-volatile memory. Since the HspSaveCalibra-
tion function has the potential for taking a long* time to complete, the
HspGetSaveStatus function should be used to determine when the save
has completed before other functions are used. The HspSaveStatus func-
tion will also report if the save was completed successfully.

* A long time is only a few seconds, but that is long relative to the other
functions which only take a few thousandths of a second.

Adjusting Probe Amplifier Gain 49

Appendix A: HSP-8 Formula Syntax

When a channel is read, its value is computed by a formula supplied to the
HSP-8 by the host software. The formulae are supplied to the HSP-8 in
the form of an ASCII string terminated by a null byte. Formulae are con-
structed in much the same way as they are in assignment statements in pro-
gramming languages such as BASIC.

Formulae consist of combinations of functions, operators, constants, input
terms and channel terms.

Peak Hold Functions
MAX returns the largest value it sees as an argument while scanning.
MIN returns the smallest value it sees as an argument while scanning.
TIR returns MAX-MIN.
The MAX, MIN and TIR functions continue to be scanned although the
channel which uses them is not being read by the host software. They will
’freeze’ at their current value if scanning is disabled. The scanning is con-
trolled by the functions HspStartScan and HspStopScan. The period of
scanning is set by the HspSetScanTime function. They are reset by the
HspResetMM function.

Mathematical Functions
ABS returns the absolute value of the argument.
ACOS returns the arc-cosine of the argument. Result in radians.
ASIN returns the arc-sine of the argument. Result in radians.
ATAN returns the arctangent of the argument. Result in radians.
COS returns the cosine of the argument. Argument in radians.
GOF returns the greatest (most positive) of the argument list.
GOR returns the greatest (most positive) of the range set by the argument
list.
LOF returns the least (most negative) of the argument list.
LOR returns the least (most negative) of the range set by the argument list.
SIN returns the sine of the argument. Argument in radians.
SQRT returns the square root of the argument.
SQR returns the argument multiplied by itself.
TAN returns the tangent of the argument. Argument in radians.

Miscellaneous Functions
PI2 has the value 3.141592654/2.0
PI has the value 3.141592654
RAD returns the argument converted from degrees to radians.
DEG returns the argument converted from radians to degrees.
(and) are allowed to impose computaion order.

Appendix A: HSP-8 Formula Syntax 50

Mathematical Operators
^ exponeniation
* multiplication.
/ division. (division by zero returns zero
+ addition.
- subtraction.

Constants
Constants in formulae are specified as ASCII strings. Scientific notation is
not allowed for constants, (i.e., ’.125’ is allowed, ’1.25E-01’ is not al-
lowed).

Input Terms
Tn returns the value of transducer number n. The number n must be in the
range 1 to 32. The HSP-8 will read the transducer, multiply by the
transducer full scale value and add the transducer offset. Each transducer
has an individual full scale value and offset.

Channel Terms
Cn returns the value of channel number n. The number n must be in the
range 1 to 96. The HSP-8 will compute the value of channel nn, multiply
by the channel full scale value and add the channel offset. Each channel
has an individual full scale value and offset. Circular references to chan-
nels are not allowed and will cause the HSP-8 to return an error code.

Example Formulae

T1
T1+T2
MAX(T2-T1)
(T1+T2+T3)/3
1.0034*(T1+T2)
(MAX(T1)+MIN(T1))/2
TIR(T3) same as MAX(T3)-MIN(T3)
GOF(T1,T2,T3) returns the greatest of T1, T2 and T3.
LOF(T1,T2,T3,T4) returns the least of T1, T2, T3 and T4.
GOR(T1,T8) returns the greatest of T1,T2,T3,T4,T5,T6,T7 and T8.
LOR(C9,C13) returns the least of C9,C10,C11,C12 and C13.

Appendix A: HSP-8 Formula Syntax 51

Appendix B: Startup Settings

Immediately after turning on the HSP-8, before any HSP-8 functions are
executed, the following settings will be in effect:
All 96 channel scale factors are set to 1.
All 96 channel zero offsets are set to zero.
All 32 transducer full scale values are set to .02.
All 32 transcducer zero offsets are set to zero.
The burst average is set to 4.
The running average is set to 1.
The floating point input and output modes are both set to the native
(IEEE) mode.

Appendix B: Startup Settings 52

Appendix C: Error Codes

Communication Error

• -1 The HSP-8 is not responding to communication from the host PC. Is the
HSP-8 plugged in and powered.

Command Error

• 1 An invalid command or parameter was entered.

• 2 - 9: Reserved.

Channel Definition Errors
When defining channels, error codes 10-22 may be returned. They may be
used to help determine the part of the formula which is causing the prob-
lem.

• 10 An invalid channel number was entered.

• 11 Internal error..

• 12 Invalid opcode mneumonic.
A built-in function name has been improperly typed in. If "SINE(T4)" is entered
instead of "SIN(T4)" or "T1+S3" instead of "T1+T3".

• 13 Not enough operands for operator.
If "T1+" is entered the HSP-8 cannot determine what value to add to T1. If
"SIN()" is entered the HSP-8 cannot determine what value to use as the
argument of the sine function.

• 14 Node table full.
The HSP-8 reduces the entered formulae into a form which can be quickly
computed when required. The reduced formulae are stored in a table which has a
predetermined size. When the table is filled this error is returned. If this error
occurs, the number or the complexity of the entered formulae must be reduced.
Determining the number of node entries in the node table that a particular
formula consumes is difficult due to certain optimizations which the HSP-8
applies during the formula reduction process. The following guidelines will
allow determining the maximum number of nodes which a given formula will
consume.
1. Each constant consumes one node. The formula ".0023" consumes one node.
2. Each function use consumes one node for the function. Additional nodes will
be consumed for the function’s arguments. The formula "SIN(.0023)" consumes
one node for the SIN function plus one node (Rule 1) for the constant .0023, for
a total of 2 nodes. The TIR function is a special case which consumes 2 nodes
just for the function plus the additional nodes for the function arguments. The
formula "TIR(.0023)" consumes 2 nodes for the TIR function and 1 node for the
constant, for a total of 3 nodes.
3. Arithmetic operators (+ - * /) consume one node. The formula "1 + 2 + 3"
consumes 1 node for each of the "+" operators plus 1 node for each of the
constants (Rule 1), for a total of 5 nodes.
4. Channel references consume one node. The formula "C1" consumes 1 node.
5. Transducers and analog inputs consume one node. The formula "T1"
consumes 1 node. The formula "T1 + T2" consumes 1 node for each of the

Appendix C: Error Codes 53

transducers plus 1 node for the "+" operator (Rule 3), for a total of 3 nodes. The
first appearance of a transducer in a formula consumes 1 node however
subsequent appearances of the same transducer in any formula do not consume
additional nodes.
 Channel 1 is "T1+T2". This uses 3 nodes.
 Channel 2 is "T1+T3". This uses 2 nodes. T1 has already been allocated a node
by the channel 1 formula.

The total number of nodes available is 400.
The HSP-8 cannot conserve nodes by recognising common subexpressions in
formulae. Node table space can be conserved by defining a channel with the
subexpression and then referencing that channel in the formulae which need the
subexpression value.

Channel 1 is "T5 - (T1 + T2 + T3 + T4)". (9 nodes)
Channel 2 is "T6 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 3 is "T7 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 4 is "T8 - (T1 + T2 + T3 + T4)". (5 nodes)
For a total of 9+5+5+5 or 24 nodes.

Alternately define channel 50 with the subexpression and use channel 50 in
place of the subexpression:
 Channel 50 is "T1 + T2 + T3 + T4". (7 nodes)
 Channel 1 is "T5 - C50". (3 nodes)
 Channel 2 is "T6 - C50". (3 nodes)
 Channel 3 is "T7 - C50". (3 nodes)
 Channel 4 is "T8 - C50". (3 nodes)
For a total of 7+3+3+3 or 16 nodes.

• 15 Bad transducer or analog input number.
If a formula contains "T175" or "A32". The highest transducer number allowed
is "T32". The highest analog input number allowed is "A1". Note: Although the
HSP-8 accepts transducer numbers up to 32 the slave HSP-8’s must be present
for these to produce any meaningful measurements.

• 16 Too many operands for operator.
If "T1 + T2 T3" is entered, the HSP-8 cannot determine what to do with the T3
part of the formula.

• 17 Bad numeric value in expression.
When entering constants in a formula "scientific notation" is not allowed. In
some computer languages the value .0015 may be entered as "1.5E-3". The
HSP-8 requires that the value be entered as ".0015".

• 18 Bad token. An invalid symbol was entered.

• 19 Formula too complex to parse.
This error occurs when a formula has more levels of parenthesis than the HSP-8
can handle

• 20 Recursive channel definition.
This error occurs when channels reference each other in a circular fashion.
 Channel 1 has the formula "T1+T2-C2".
 Channel 2 has the formula "T3+C1".
To determine the value of channel 1 the HSP-8 must first determine the value of
channel 2, which is dependent on the value of channel 1.

Appendix C: Error Codes 54

• 21 No memory left to allocate.
Besides storing the formulae in a reduced form (as described under error 14), the
original text of the formula is also saved within the HSP-8 memory. The formula
text is stored in a memory pool along with other items which are necessary
during formula entry. Should this pool of memory become filled this error is
issued.

• 22 General formula error.
The formula scanner in the HSP-8 will issue this error when the formula is bad
and no other formula error codes apply.

Appendix C: Error Codes 55

