

HSP-8 PROGRAMMER'S MANUAL

HSP-8 Communications device driver
32 bit Dynamic Link Library

For use with Windows 95, 98, NT v4.0, 2000
VERSION 2.0

Probe Products Corporation
1763 Baseline Road

Grand Island, NY 14072
(716)-773-5554

(716)-773-5336 (FAX)
www.probeproducts.com

The HSP-8, an Overview

Probe Product Corporation's HSP-8 is a high speed signal conditioning data processing system
designed to allow direct connection of gaging and displacement transducers to an IBM compatible
computer.

The HSP-8 lends itself to dynamic gaging, since the on-board co-processor can complete complex
functions, with results being passed to the host computer.

Installation
Refer to the HSP-8 installation manual to install the drivers for the operating system you will be using.

Files Required to Write 32 bit C Programs that use HSP-8:

Hspcomm.h The 32bit API function declarations.
Hspcomm.lib Link this to your application.

HSPCOMM.DLL Software Interface

Overview

The HSP Communications device driver (hspcomm.dll) is written in "C" and compiled as a 32 bit
Dynamic Link Library (dll) file for use with Windows 98/NT/2000. Although the function names are the
same, the device drivers for Windows NT and Windows 98 are different so the target platform should
be known or defined before using the driver.

To use the HSP Communication functions in your software, include the supplied hspcomm.h file in
the C source files. Link the file hspcomm.lib with your application. The application must be able to
locate the hspcomm.dll file at run time.

Typical use:

//STEP 1 - Initialize
 int HspLoadStatus;

 //open hsp driver
 HspLoadStatus = HspCommInit(0);
 if(HspLoadStatus==0){
 HspSetScanTime(100); // scan time set to 10.0 ms
 // scan time must be set or it will default
 // to zero (meaning no scanning)
 HspStartScan();
 }

//STEP 2 - define channels
HspDefineChannel(1,"t1+t2");
HspDefineChannel(2,"max(t1+t2)");
HspDefineChannel(3,"min(t1+t2)");

//STEP 3 - read values
float values[3];

HspReadChannel(1,&values[0]); // pass adr of space for float
HspReadChannel(2,&values[1]); // pass adr of space for float
HspReadChannel(3,&values[2]); // pass adr of space for float

// display or store values

// to reset max/min/tir functions used in formulae call HspResetMM()
if(ResetPushedMessage)
 HspResetMM();

Communication Functions

Overview

There is one function for each of the HSP-8 commands. To use the functions, call the function with its
arguments. The function will issue the proper command code and arguments to the HSP-8. The
function will return the HSP-8's response.

Status Code

All HSP-8 functions return a status code that indicates the success or failure of the command
execution. The status code is returned as the value of the function. The functions that return values in
addition to the status code require arguments that are a pointer to a place to put the returned value.
The following rules pertain to all functions:
All functions return an integer which will be:

zero If the command was completed successfully.
-1 If unable to communicate.
+value If the command was not executable. (see Error Codes in Appendix C)

General Arguments

When functions require a channel number as an argument the channel number must be between 1
and 32. When functions require a transducer number as an argument the transducer number must be
between 1 and 32. (Transducer numbers greater than 8 will be accepted but are only meaningful if
slave HSP-8s are installed.)

General Return Values

All functions return the status as the function return value. When other values must be returned the
calling routine must supply a pointer to a variable which will have the return value stored into it.

Floating Point Arguments

This DLL only supports FP_IMODE_NATIVE, which is the default floating-point input mode. Changing
the floating-point input mode with the HspSetFpIn function will cause unpredictable results.

Floating Point Return Values

This DLL only supports FP_OMODE_NATIVE, which is the default floating-point input mode.
Changing the floating-point input mode with the HspSetFpOut function will cause unpredictable
results.

Function HspCommInit

Description Searches all attached LPT ports for an HSP-8. If found, opens a link to the
HSP-8.

In C int HspCommInit(int dummy);

In BASIC Declare Function HspCommInit Lib "hspcomm" (_
 ByVal dummy As Integer _
) As Integer

dummy Not used.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks This function or HspCommInitEx must be the first function called before any
of the other functions in HSPCOMM.DLL are used.

Function HspCommInitEx

Description Searches only the specified LPT port for an HSP-8. If found, opens a link to
the HSP-8.

In C int HspCommInitEx(int lpt, int dummy);

In BASIC Declare Function HspCommInitEx Lib "hspcomm" (_
 ByVal lpt As Integer _
 ByVal dummy As Integer _
) As Integer

 Lpt Lpt port where HSP-8 is attached.
dummy Not used.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Function HspMsgBox

Description Controls the display of an error dialog box when an HSP-8 function returns
an error.

In C void HspMsgBox(int enable);

In BASIC Declare Function HspMsgBox Lib "hspcomm" (_
 ByVal enable As Integer _
) As Integer

 enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The HspMsgBox function enables/disables a dialog box which appears
whenever there is an error detected in an hspcomm command. The dialog
box translates the interface error code into a brief descriptive error message.

The enabling/disabling of the error dialog box does not affect the error codes
returned by the other functions.

Function EppInstallMsg

Description Controls the display of parallel port driver startup diagnostic messages. This
is not generally useful, except as an aid in diagnosing problems with the
parallel port communications.

In C void EppInstallMsg(int enable);

In BASIC Declare Function EppInstallMsg Lib "hspcomm" (_
 ByVal enable As Integer _
) As Integer

 enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The EppInstallMsg function enables/disables a series of dialog boxes that
report on the progress of detecting the HSP-8 connected through a LPT port.
The information displayed by these messages is useful in diagnosing the
communication problems.

Function EppDiagMsg

Description Controls the display of an error dialog box when the parallel port
communication driver returns an error.

In C void EppDiagMsg(int enable);

In BASIC Declare Function EppDiagMsg Lib "hspcomm" (_
 ByVal enable As Integer _
) As Integer

 enable Non-zero to enable the error dialog box.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.

Remarks The EppDiagMsg function enables/disables a dialog box which appears
whenever there is an error detected in the communication with the HSP-8.
This dialog box provides more specific communication error descriptions than
the HspMsgBox, however, this dialog box is only for communication errors.
The dialog box translates the interface error code into a brief descriptive error
message.

The enabling/disabling of the error dialog box does not affect the error codes
returned by the other functions.

Function HspDLL

Description Gets the version number of the Dynamic Link Library.

In C int HspDLL(char *VersionString);

In BASIC Declare Function HspDLL Lib "hspcomm" (_
 ByVal VersionString As String, _
) As Integer

 VersionString Version number of the Dynamic Link Library.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Preliminary

Function HspStartScan

Description Enables HSP-8 scanning of MAX/MIN/TIR elements used in channel
formulae.

In C int HspStartScan(void);

In BASIC Declare Function HspStartScan Lib "hspcomm" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks None

Function HspStopScan

Description Disables HSP-8 scanning of MAX/MIN/TIR elements used in channel
formulae.

In C int HspStopScan(void);

In BASIC Declare Function HspStopScan Lib "hspcomm" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function disables the scanning of formulae which contain MAX, MIN or
TIR functions. The functions will be unaffected by changes in their
arguments.

Function HspDefineChannel

Description Defines an HSP-8 channel formula.

In C int HspDefineChannel(int channel,char *formula);

In BASIC Declare Function HspDefineChannel Lib "hspcomm" (_
 ByVal channel As Integer, _
 ByVal formula As String _
) As Integer

 channel A channel number.
formula The formula string.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument channel must be between 1 and 96, inclusive. This function
will define a formula for a channel. The formula argument is a pointer to a
string that contains a valid formula. The formulae are supplied to the HSP-8
in the form of an ASCII string terminated by a null byte. See the description
of formulae in the section HSP-8 FORMULA SYNTAX for details of allowed
formats.

Function HspReadFormula

Description Gets the formula string for the specified channel.

In C int HspReadFormula(int channel, char *formula);

In BASIC Declare Function HspReadFormula Lib "hspcomm" (_
 ByVal channel As Integer, _
 ByRef formula As String _
) As Integer

 channel A channel number.
formula Points *formula to formula string in the rx_buffer.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function will set the pointer (char **formula) to point to the ASCIIZ string
(an ASCII string terminated by a null byte) that is the formula for the specified
channel.

Note: This function does not copy the string to a destination string. The
formula string is located in the receive buffer and formula points to the
receive buffer location. The formula argument is a pointer to a string that
contains a valid formula. See the description of formulae in the section HSP-
8 FORMULA SYNTAX for details of allowed formats.

Function HspClearAllChannels

Description Erases the formulae in all HSP-8 channels.

In C int HspClearAllChannels(void)

In BASIC Declare Function HspClearAllChannels Lib "hspcomm" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Function HspClearChannel

Description Erases the formula for the specified HSP-8 channels.

In C int HspClearChannel(int channel);

In BASIC Declare Function HspClearChannel Lib "hspcomm" (_
 ByVal channel As Integer _
) As Integer

 channel A channel number.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks None

Function HspReadChannel

Description Computes the value of the specified channel and returns the value.

In C int HspReadChannel(int channel, float *value);

In BASIC Declare Function HspReadChannel Lib "hspcomm" (_
 ByVal channel As Integer, _
 ByRef value As Single _
) As Integer

 channel A channel number.
value The current value of the channel.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks None

Function HspSetCzero

Description Sets the zero offset for the specified channel.

In C int HspSetCzero(int channel, float *zero);

In BASIC Declare Function HspSetCzero Lib "hspcomm" (_
 ByVal channel As Integer, _
 ByRef zero As Single _
) As Integer

 channel A channel number.
zero The new zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The channel's zero offset value is added to the channel value when the
HspReadChannel function is used and when the channel is used in a formula
for another channel.

Function HspReadCzero

Description Gets the zero offset for the specified channel.

In C int HspReadCzero(int channel, float *zero);

In BASIC Declare Function HspReadCzero Lib "hspcomm" (_
 ByVal channel As Integer, _
 ByRef zero As Single _
) As Integer

 channel A channel number.
zero The current zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The channel's zero offset value is added to the channel value when the
HspReadChannel function is used and when the channel is used in a
formula for another channel.

All functions return the status as the function return value. When other values
must be returned the calling routine must supply a pointer to a variable which
will have the return value stored into it.

Function HspResetMM

Description Resets all MIN/MAX/TIR elements used in channel formulae.

In C int HspResetMM(void)

In BASIC Declare Function HspResetMM Lib "hspcomm" (_
) As Integer

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks None

Function HspReadLvdt

Description Gets the current value of the specified probe.

In C int HspReadLvdt(int probe, float *value);

In BASIC Declare Function HspReadLvdt Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef value As Single _
) As Integer

 probe A probe number.
value The probe value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.The value is determined
by:
value = fsv * amplifier value + offset
Where the amplifier value ranges from -4.096 to +4.095.

Function HspSetTfsv

Description Sets the full-scale value of the specified probe amplifier.

In C int HspSetTfsv(int probe, float *fsv)

In BASIC Declare Function HspSetTfsv Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef fsv As Single _
) As Integer

 probe A probe number.
fsv The new full-scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
See HspReadLvdt for explanation of how this affects readings.

Function HspReadTfsv

Description Gets the current full-scale value of the specified probe amplifier.

In C int HspReadTfsv(int probe, float *fsv)

In BASIC Declare Function HspReadTfsv Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef fsv As Single _
) As Integer

 probe An probe number.
fsv The current full-scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
See HspReadLvdt for explanation of how this affects readings.

Function HspSetTzero

Description Sets the zero offset of the specified probe amplifier.

In C int HspSetTzero(int probe, float *zero);

In BASIC Declare Function HspSetTzero Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef zero As Single _
) As Integer

 probe A probe number.
zero The new probe amplifier zero value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
See HspReadLvdt for explanation of how this affects readings.

Function HspReadTzero

Description Gets the current zero offset for the specified probe amplifier.

In C int HspReadTzero(int probe, float *zero);

In BASIC Declare Function HspReadTzero Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef zero As Single _
) As Integer

 probe A probe number.
zero The current zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
See HspReadLvdt for explanation of how this affects readings.

Function HspReadAnalog

Description Gets the specified analog input value.

In C int HspReadAnalog(int analog, float *value);

In BASIC Declare Function HspReadAnalog Lib "hspcomm" (_
 ByVal analog As Integer, _
 ByRef value As Single _
) As Integer

 analog An analog number.
value The analog value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function reads the current value of an analog input. The HSP-8 has no
analog inputs. This function returns a value that reflects the state of the RTS
line on the RS-232 connector.

Function HspSetAfsv

Description Sets full-scale value for the specified analog input.

In C int HspSetAfsv(int analog, float *fsv)

In BASIC Declare Function HspSetAfsv Lib "hspcomm" (_
 ByVal analog As Integer, _
 ByRef fsv As Single _
) As Integer

 analog An analog number.
fsv The analog full-scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function sets the full-scale value of an analog input.
See Remarks for HspReadAnalog

Function HspReadAfsv

Description This function gets the full scale value of an analog input.

In C int HspReadAfsv(int analog, float *fsv);

In BASIC Declare Function HspReadAfsv Lib "hspcomm" (_
 ByVal analog As Integer, _
 ByRef fsv As Single _
) As Integer

 analog An analog number.
fsv The analog full scale value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks This function reads the full scale value of an analog input.
See Remarks for HspReadAnalog

Function HspSetAzero

Description Sets the zero offset for the specified analog input.

In C int HspSetAzero(int analog, float *zero);

In BASIC Declare Function HspSetAzero Lib "hspcomm" (_
 ByVal analog As Integer, _
 ByRef zero As Single _
) As Integer

 analog An analog number.
zero Pointer to the analog zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The zero offset is added to the analog input value when the read analog
function is used or when the analog input is used in a formula.
See Remarks for HspReadAnalog

Function HspReadAzero

Description Gets the zero offset for the specified analog input.

In C int HspReadAzero(int analog, float *zero);

In BASIC Declare Function HspReadAzero Lib "hspcomm" (_
 ByVal analog As Integer, _
 ByRef zero As Single _
) As Integer

 analog An analog number.
zero Pointer to the analog zero offset value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks See Remarks for HspReadAnalog

Function HspSetLvdtGain

Description Sets probe gain resistors on the specified probe amplifier.

In C int HspSetLvdtGain(int probe, unsigned char Rf, unsigned char Ri);

In BASIC Declare Function HspSetLvdtGain Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByVal Rf As Byte,_
 ByVal Ri As Byte_
) As Integer

 probe A probe number.
Rf Feedback resistor code
Ri Input resistor code

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The feedback resistor code, Rf, must be in the range 0 to 255.
The input resistor code, Ri, must be in the range 0 to 255.

See Section on Adjusting Gain.

Function HspReadLvdtGain

Description Gets probe gain resistors on the specified probe amplifier.

In C int HspReadLvdtGain(int probe, unsigned char *Rf, unsigned char *Ri);

In BASIC Declare Function HspReadLvdtGain Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef Rf As Byte,_
 ByRef Ri As Byte_
) As Integer

 probe A probe number.
Rf Feedback resistor code.
Ri Input resistor code.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The feedback resistor code, Rf, will be in the range 0 to 255.
The input resistor code, Ri, will be in the range 0 to 255.

See Section on Adjusting Gain.

Function HspSetLvdtFine

Description Sets fine gain trim on the specified probe amplifier.

In C int HspSetLvdtFine(int probe, short int fine);

In BASIC Declare HspSetLvdtFine Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByVal fine As Integer_
) As Integer

 probe A probe number.
fine The gain fine adjust value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The fine argument must be in the range -100 to +100.
See Section on Adjusting Gain.

Function HspReadLvdtFine

Description Gets fine gain trim on the specified probe amplifier.

In C int HspReadLvdtFine(int probe, short int *fine);

In BASIC Declare Function HspReadLvdtFine Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef fine As Integer_
) As Integer

 probe A probe number.
fine The current fine gain trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The returned value of fine will be in the range -100 to +100.

See Section on Adjusting Gain.

Function HspSetLvdtNull

Description Sets null trim on the specified probe amplifier.

In C int HspSetLvdtNull(int probe, short int offset);

In BASIC Declare Function HspSetLvdtNull Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByVal offset As Integer_
) As Integer

 probe A probe number.
offset The new offset zero trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The offset argument must be in the range -100 and +100.

See Section on Adjusting Gain.

Function HspReadLvdtNull

Description Gets null trim on the specified probe amplifier.

In C int HspReadLvdtNull(int probe, short int *offset);

In BASIC Declare Function HspReadLvdtNull Lib "hspcomm" (_
 ByVal probe As Integer, _
 ByRef offset As Integer, _
) As Integer

 probe A probe number.
offset The current offset zero trim value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe argument must be in the range 1 to 32.
The offset argument must be in the range -100 and +100.

See Section on Adjusting Gain.

Function HspSaveCalibration

Description Commits the current calibration to non-volatile memory.

In C HspSaveCalibration(short int *savestatus);

In BASIC Declare Function SaveCalibration Lib "hspcomm" (_
 ByRef savestatus As Integer_
) As Integer

 savestatus The status of the save request is stored here.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Save calibration to eeprom.

savestatus = 0 means saving of calibration data has started
savestatus = any other value means the firmware was unable to start the
save operation (most likely a previous save has not yet completed)

Function HspGetSaveStatus

Description Checks for non-volatile memory write complete.

In C int HspGetSaveStatus(short int *savecomplete, short int *saveerror);

In BASIC Declare Function HspGetSaveStatus Lib "hspcomm" (_
 ByRef savecomplete As Integer, _
 ByRef saveerror As Integer_
) As Integer

 savecomplete See Remarks.
saveerror See Remarks.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks savecomplete = 1 means saving is done and saveerror = 0 means saving
was successful
 savecomplete = 0 means saving is in progress and saveerror has no
meaning

Function HspSetScanTime

Description Sets scanning period for MAX, MIN and TIR functions.

In C int HspSetScanTime(short int time);

In BASIC Declare Function HspSetScanTime Lib "hspcomm" (_
 ByVal time As Integer _
) As Integer

 time New scanning period value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument time is in units of tenths of milliseconds.

Function HspGetScanTime

Description Gets the scanning period for MAX, MIN and TIR functions.

In C int HspGetScanTime(short int *time);

In BASIC Declare Function HspGetScanTime Lib "hspcomm" (_
 ByRef time As Integer _
) As Integer

 time The current scanning period value.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The argument time is in units of tenths of milliseconds. Example: A value of
100 means 10.0 milliseconds.

Function HspGetScanFlag

Description Gets the current state of the HSP scan flag.

In C int HspGetScanFlag(short int *flag);

In BASIC Declare Function HspGetScanFlag Lib "hspcomm" (_
 ByRef flag As Integer _
) As Integer

 flag Read the current scan flag setting.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Read the current scan flag setting.

Function HspReadDirect

Description Gets probe amplifier values as signed integers.

In C int HspReadDirect(int count, unsigned char *list,
 short int **values);

In BASIC Declare Function HspReadDirect Lib "hspcomm" (_
 ByVal count As Integer, _
 ByRef list As Byte, _
 ByRef values As Integer _
) As Integer

 count Number of probe's to be read.
list Pointer to a list of probe numbers.
values Pointer to an integer pointer.
The calling routine passes the address of a variable where the pointer to the
table of values is to be stored.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe numbers are 8 bit integers starting at "0" through "7" for the first
HSP-8, "8" through "15" for the second HSP-8, etc.
The foot switch input is "96".

Each of the returned integers or values will be in the range of -8192 to
+8191.
See Remarks on ReadDirectCopy function.

Function HspReadDirectCopy

Description Reads the requested amplifiers and copies the results to the buffer provided
by the calling routine.

In C int HspReadDirectCopy(int count, unsigned char *list, short int *values);

In BASIC Declare Function HspReadDirectCopy Lib "hspcomm" (_
 ByVal count As Integer, _
 ByRef list As Byte, _
 ByRef values As Integer _
) As Integer

 count Number of probe's to be read.
list Pointer to the list of probe numbers.
values Pointer to buffer where values are to be stored.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The probe numbers are 8 bit integers starting at "0" through "7" for the first
HSP-8, "8" through "15" for the second HSP-8, etc. The foot switch input is
"96".
Each of the returned integers or values will be in the range of -8192 to
+8191.
The buffer must be large enough to hold count 16 bit integers.
The HspReadDirectCopy and HspReadDirect functions do the same thing,
except for how the results are transferred back to the calling program. The
HspReadDirectCopy function is useful when using some BASIC compilers
which provide no argument passing option which is equivalent to the C int
**values argument.

Function HspSetAdcAvg

Description Sets burst average length.

In C int HspSetAdcAvg(short int NumberToAvg);

In BASIC Declare Function HspSetAdcAvg Lib "hspcomm" (_
 ByVal NumberToAvg As Integer _
) As Integer

 NumberToAvg New burst average length.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks Each amplifier or analog request will be read NumberToAvg times. The
returned value will be the average of these readings. Each of the readings is
very closely spaced in time (about 5us per reading).

At startup the burst average is set to 4.

Function HspSetRunAvg

Description Sets running average length.

In C int HspSetRunAvg(short int NumberToAvg);

In BASIC Declare Function HspSetRunAvg Lib "hspcomm" (_
 ByVal NumberToAvg As Integer _
) As Integer

 NumberToAvg New running average length.

Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value.
See Error Codes in Appendix C.

Remarks The running average will accumulate one reading per scan period up to
NumberToAvg, at which time it will discard the oldest value. When the value
of a channel is requested, the average of the accumulated values for that
channel will be returned. The running average only effects values from
HspReadChannel. It has no effect on HspReadDirect or HspReadLvdt.

At startup the running average is set to 1.

Adjusting Probe Amplifier Gain

Each probe amplifier has two software adjustable resistors that together set the voltage gain of the
probe amplifier. The two resistors are referred to as the input resistor (Ri) and the feedback resistor
(Rf). The probe amplifier gain is determined by the following formula:

 Gain = 1 + Rf / Ri

Although both resistors are adjustable, it is recommended that the input resistor (Ri) be set and left at
the value of 50. This allows the gain to be varied from a minimum of 1 (Rf=0) to a maximum of a
little more than 6 (Rf=255). This range will accommodate most probes that are used with the probe
amplifier. If high output probes are used in combination with a high Gain setting, the detector will
overload and cause signal polarity reversal. This will not cause any permanent damage, but the
resulting readings will be erroneous.

The functions HspSetLvdtGain and HspReadLvdtGain are used to manipulate the Rf and Ri values
on a per amplifier basis. The functions HspSetLvdtFine and HspReadLvdtFine manipulate a fine
gain adjust factor, which is useful if it is desired to set a gain between the steps allowed by the setting
of Rf.

The HspSetLvdtNull and HspReadLvdtNull are useful for removing any residual reading that exists
with the probe amplifier inputs open circuit.

Once the calibration is satisfactory, it can be made the power-up default by using the
HspSaveCalibration function. This function will commit the calibration values to a non-volatile
memory. Since the HspSaveCalibration function has the potential for taking a long* time to
complete, the HspGetSaveStatus function should be used to determine when the save has
completed before other functions are used. The HspSaveStatus function will also report if the
save was completed successfully.

* A long time is only a few seconds, but that is long relative to the other functions that only take a few
thousandths of a second.

Appendix A: HSP-8 Formula Syntax

When a channel is read, its value is computed by a formula supplied to the HSP-8 by the host
software. The formulae are supplied to the HSP-8 in the form of an ASCII string terminated by a null
byte. Formulae are constructed in much the same way as they are in assignment statements
in programming languages such as BASIC.

Formulae consist of combinations of functions, operators, constants, input terms and channel terms.

Peak Hold Functions

MAX returns the largest value it sees as an argument while scanning.
MIN returns the smallest value it sees as an argument while scanning.
TIR returns MAX-MIN.
The MAX, MIN and TIR functions continue to be scanned although the channel that uses them is not
being read by the host software. They will 'freeze' at their current value if scanning is disabled. The
scanning is controlled by the functions HspStartScan and HspStopScan. The period of scanning is
set by the HspSetScanTime function. They are reset by the HspResetMM function.

Mathematical Functions

ABS returns the absolute value of the argument.
ACOS returns the arc-cosine of the argument. Result in radians.
ASIN returns the arc-sine of the argument. Result in radians.
ATAN returns the arctangent of the argument. Result in radians.
COS returns the cosine of the argument. Argument in radians.
GOF returns the greatest (most positive) of the argument list.
GOR returns the greatest (most positive) of the range set by the argument list.
LOF returns the least (most negative) of the argument list.
LOR returns the least (most negative) of the range set by the argument list.
SIN returns the sine of the argument. Argument in radians.
SQRT returns the square root of the argument.
SQR returns the argument multiplied by itself.
TAN returns the tangent of the argument. Argument in radians.

Miscellaneous Functions
PI2 has the value 3.141592654/2.0
PI has the value 3.141592654
RAD returns the argument converted from degrees to radians.
DEG returns the argument converted from radians to degrees.
(and) are allowed to impose computation order.

Mathematical Operators
^ exponentiation
* multiplication.
/ division. (division by zero returns zero)
+ addition.
- subtraction.

Constants
Constants in formulae are specified as ASCII strings. Scientific notation is not allowed for constants,
(i.e., '.125' is allowed, '1.25E-01' is not allowed).

Input Terms
Tn returns the value of transducer number n. The number n must be in the range 1 to 32. The HSP-8
will read the transducer, multiply by the transducer full scale value and add the transducer offset.
Each transducer has an individual full scale value and offset.

Channel Terms
Cn returns the value of channel number n. The number n must be in the range 1 to 96. The HSP-8
will compute the value of channel nn, multiply by the channel full scale value and add the channel
offset. Each channel has an individual full scale value and offset. Circular references to channels are
not allowed and will cause the HSP-8 to return an error code.

Example Formulae
T1
T1+T2
MAX(T2-T1)
(T1+T2+T3)/3
1.0034*(T1+T2)
(MAX(T1)+MIN(T1))/2
TIR(T3) same as MAX(T3)-MIN(T3)
GOF(T1,T2,T3) returns the greatest of T1, T2 and T3.
LOF(T1,T2,T3,T4) returns the least of T1, T2, T3 and T4.
GOR(T1,T8) returns the greatest of T1,T2,T3,T4,T5,T6,T7 and T8.
LOR(C9,C13) returns the least of C9,C10,C11,C12 and C13.

Appendix B: Startup Settings

Immediately after turning on the HSP-8, before any HSP-8 functions are executed, the following
settings will be in effect:

All 96 channel scale factors are set to 1.
All 96 channel zero offsets are set to zero.
All 32 transducer full scale values are set to .02.
All 32 transducer zero offsets are set to zero.
The burst average is set to 4.
The running average is set to 1.
The floating point input and output modes are both set to the native (IEEE) mode.

Appendix C: Error Codes

Communication Error

-1 The HSP-8 is not responding to communication from the host PC. Is the HSP-8 plugged in and
powered?

Command Error

1 An invalid command or parameter was entered.

2 - 9: Reserved.

Channel Definition Errors

When defining channels, error codes 10-22 may be returned. They may be used to help determine
the part of the formula that is causing the problem.

@BULLET = 10 An invalid channel number was entered.

@BULLET = 11 Internal error.

@BULLET = 12 Invalid opcode mnemonic.
A built-in function name has been improperly typed in. If "SINE(T4)" is entered instead of "SIN(T4)" or
"T1+S3" instead of "T1+T3".

@BULLET = 13 Not enough operands for operator.
If "T1+" is entered the HSP-8 cannot determine what value to add to T1. If "SIN()" is entered the HSP-
8 cannot determine what value to use as the argument of the sine function.

@BULLET = 14 Node table full.
The HSP-8 reduces the entered formulae into a form that can be quickly computed when required.
The reduced formulae are stored in a table that has a predetermined size. When the table is filled this
error is returned. If this error occurs, the number or the complexity of the entered formulae must be
reduced.
Determining the number of node entries in the node table that a particular formula consumes is
difficult due to certain optimizations which the HSP-8 applies during the formula reduction process.

The following guidelines will allow determining the maximum number of nodes that a given formula
will consume.

1. Each constant consumes one node. The formula ". 0023" consumes one node.

2. Each function use consumes one node for the function. Additional nodes will be consumed for the
function's arguments. The formula "SIN(.0023)" consumes one node for the SIN function plus one
node (Rule 1) for the constant .0023, for a total of 2 nodes. The TIR function is a special case which
consumes 2 nodes just for the function plus the additional nodes for the function arguments. The
formula "TIR(.0023)" consumes 2 nodes for the TIR function and 1 node for the constant, for a total of
3 nodes.

3. Arithmetic operators (+ - * /) consume one node. The formula "1 + 2 + 3" consumes 1 node for
each of the "+" operators plus 1 node for each of the constants (Rule 1), for a total of 5 nodes.

4. Channel references consume one node. The formula "C1" consumes 1 node.

5. Transducers and analog inputs consume one node. The formula "T1" consumes 1 node. The
formula "T1 + T2" consumes 1 node for each of the transducers plus 1 node for the "+" operator (Rule
3), for a total of 3 nodes. The first appearance of a transducer in a formula consumes 1 node however
subsequent appearances of the same transducer in any formula do not consume additional nodes.
 Channel 1 is "T1+T2". This uses 3 nodes.
 Channel 2 is "T1+T3". This uses 2 nodes. T1 has already been allocated
a node by the channel 1 formula.

The total number of nodes available is 400.
The HSP-8 cannot conserve nodes by recognising common subexpressions
in formulae. Node table space can be conserved by defining a channel
with the subexpression and then referencing that channel in the formulae
which need the subexpression value.

Channel 1 is "T5 - (T1 + T2 + T3 + T4)". (9 nodes)
Channel 2 is "T6 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 3 is "T7 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 4 is "T8 - (T1 + T2 + T3 + T4)". (5 nodes)
For a total of 9+5+5+5 or 24 nodes.

Alternately define channel 50 with the subexpression and use channel
50 in place of the subexpression:
 Channel 50 is "T1 + T2 + T3 + T4". (7 nodes)
 Channel 1 is "T5 - C50". (3 nodes)
 Channel 2 is "T6 - C50". (3 nodes)
 Channel 3 is "T7 - C50". (3 nodes)
 Channel 4 is "T8 - C50". (3 nodes)
For a total of 7+3+3+3 or 16 nodes.

@BULLET = 15 Bad transducer or analog input number.
If a formula contains "T175" or "A32". The highest transducer number
allowed is "T32". The highest analog input number allowed is "A1".
Note: Although the HSP-8 accepts transducer numbers up to 32 the slave
HSP-8's must be present for these to produce any meaningful measurements.

@BULLET = 16 Too many operands for operator.
If "T1 + T2 T3" is entered, the HSP-8 cannot determine what to do
with the T3 part of the formula.

@BULLET = 17 Bad numeric value in expression.
When entering constants in a formula "scientific notation" is not
allowed. In some computer languages the value .0015 may be entered
as "1.5E-3". The HSP-8 requires that the value be entered as ".0015".

@BULLET = 18 Bad token. An invalid symbol was entered.

@BULLET = 19 Formula too complex to parse.
This error occurs when a formula has more levels of parenthesis than
the HSP-8 can handle

@BULLET = 20 Recursive channel definition.
This error occurs when channels reference each other in a circular
fashion.
 Channel 1 has the formula "T1+T2-C2".
 Channel 2 has the formula "T3+C1".
To determine the value of channel 1 the HSP-8 must first determine

the value of channel 2, which is dependent on the value of channel
1.

@BULLET = 21 No memory left to allocate.
Besides storing the formulae in a reduced form (as described under
error 14), the original text of the formula is also saved within the
HSP-8 memory. The formula text is stored in a memory pool along with
other items which are necessary during formula entry. Should this
pool of memory become filled this error is issued.

@BULLET = 22 General formula error.
The formula scanner in the HSP-8 will issue this error when the formula
is bad and no other formula error codes apply.

