
HSI-24/14 OPERATOR’S MANUAL VERSION 3.0

Probe Products Corporation

1763 Baseline Road

Grand Island, NY 14072

(716) 773-5554

(716)-773-5336 FAX

Table of Contents

The HSI-24, an Overview 1

System Components 1

Large Systems 1

Auxiliary Inputs 1

High Speed Operation 2

Quick Start 3

Files on Diskette 4

Files Required to run HSI-24 4

Files to Run HSI-24 Demo Program 4

Files Containing Source of HSI-24 Demo Program 4

Files Not on Diskette 4

HSIDEMO Application/Setup Program 5

General Description 5

Data Logging/Printing 6

CAL40B.CFG Setup File 6

HSIDEMO Default Setup 6

HSIDEMO Startup Options 7

HSIDEMO Menu 1 7

HSIDEMO Menu 2 7

HSIDEMO Channel Scrolling Keys 8

HSIDEMO Bar Graphs 8

Software Interface 10

Overview 10

Top Level Communication Functions 11

Status Code 11

General Arguments 11

General Return Values 11

Floating Point Arguments 11

Floating Point Return Values 12

Funtion hsicomm_init 12

Function set_diag 12

Function start_scan 12

Function stop_scan 12

Function define_channel 12

Function read_formula 13

Function clear_channels 13

Function clear_channel 13

Function read_channel 13

Function set_czero 13

Function read_czero 13

Function reset_mm 13

Function read_lvdt 13

Function set_tfsv 13

Function read_tfsv 14

Function set_tzero 14

Function read_tzero 14

Function read_analog 14

Function set_afsv 14

Function read_afsv 14

Function set_azero 14

Function read_azero 14

Function reada_channel 14

Function seta_czero 15

Function reada_czero 15

Function reada_lvdt 15

Function seta_tfsv 15

Function reada_tfsv 15

Function seta_tzero 15

Function reada_tzero 15

Function reada_analog 15

Function seta_afsv 15

Function reada_afsv 16

Function seta_azero 16

Function reada_azero 16

Function set_scan_time 16

Function get_scan_time 16

Function set_fp_in 16

Function get_fp_in 16

Function set_fp_out 16

Function get_fp_out 17

Function set_fp_prec 17

Function get_fp_prec 17

Function get_scan_flag 17

Function set_mux_time 17

Function get_mux_time 17

Function read_direct 17

Middle Level Functions 18

Blocks to HSI-24 18

Blocks from HSI-24 18

Function send_command 19

Function get_response 19

HSI-24 Timeout 19

Low Level Functions 20

Function pbyte 20

Function gbyte 20

Function xfer 20

Customization of hsicomm.c 21

HSI-24 Formula Syntax 22

Peak Hold Functions 22

Mathematical Functions 22

Miscellaneous Functions 22

Mathematical Operators 23

Constants . 23

Input Terms 23

Channel Terms 23

Example Formulae 23

HSI-24 Command Codes 24

Startup Settings 26

Error Codes 27

HSI-24 HARDWARE 29

Changing the I/O Address 29

Connector Pinout 30

Adjustments 31

The HSI-24, an Overview

Probe Product Corporation’s HSI-24 is a high speed signal conditioning/data processing
system designed to allow direct connection of gaging and displacement transducers to an
IBM PC, XT, AT ,386, 486 or compatible computer.

To acquaint a new user with the powerful features of the HSI-24, an application program
is furnished with the system. This program can be used "as-is" to set up a measurement
system, or it can be used as a basis for customized software. Source code for this applica-
tion program is included as part of the system.

System Components

The system consists of four parts:
1- a master system board with onboard 16-bit processor, A/D converter and all other ac-
tive analog and digital devices, residing within the computer and occupying one slot,
2- a cable assembly to connect the system board to a passive external junction box with
transducer sockets,
3- a passive junction box (normally located near the transducers) with sockets suitable for
the transducers in use, and
4- a diskette containing the internal operating software (firmware) for the system and
sample application/setup programs.

Some systems may contain special cable assemblies for specific applications, or no cable
and junction box at all, when those connections are to be made on-site.

Large Systems

For those applications requiring conditioning for more than 24 transducers, slave system
boards, cable assemblies and boxes are added to the master system. Up to 96 transducers
can be conditioned by one such master/slave system.

Auxiliary Inputs

Besides the transducer inputs, each system board (master or slave) has four +/-5VDC in-
puts which may be used for any analog signal which has (or can be modified to have) suit-
able values. Digital inputs from TTL devices, Hall-effect proximity switches and switch
closures are typical inputs which can also be used.
A fully expanded HSI-24 system will, therefore, have the capacity for 96 transducers and
16 voltage sources.

The HSI-24, an Overview 1

High Speed Operation

It is important to note that all signal conditioning for the transducers is accomplished
within the system--no external gaging amplifiers, A/D converters or communication ports
are required.
The HSI-24 lends itself to dynamic gaging, since complex functions can be completed by
the on-board co-processor, with results being passed to the host computer. And, since all
communications to the host computer are passed directly to its bus, data transfer rates are
many times faster than those possible using RS-232, RS-422 or IEEE- 488 interfaces.
These two factors combine to allow very high speed gaging operations. Transducer sig-
nals, or even complex measurement functions (using the unique formulae construction
techniques) can be passed to the host at up to 2,500 readings per second.

The HSI-24, an Overview 2

Quick Start

For those users who are sure they are familiar with the installation of adapter cards in PC
type equipment, this section provides a brief setup procedure.

1. Remove power and cover from PC.
2. Install HSI-24 card. Be sure to install the rear bracket hold-down screw, otherwise the
force from flexing the large interface cable will pop the HSI-24 card out of the bus con-
nector.
3. Install the large interface cable between the HSI-24 rear connector and the transducer
junction box. Unless you have special cables the ends of the large cable are interchange-
able.
4. Replace the computer covers.
5. Start the computer.
6. Make a subdirectory for the HSI-24 software.
7. Copy all the files from the supplied diskette to the HSI-24 subdirectory.
8. Run the batch file called RUN.

The HSI-24, an Overview 3

Files on Diskette

Files Required to run HSI-24

PCA.BIN firmware which is loaded into coprocessor
PCALDR.EXE program to load firmware into HSI-24

Files to Run HSI-24 Demo Program

HSIDEMO.EXE program which displays readings on the host screen.

Files Containing Source of HSI-24 Demo Program

HSIDEMO.C source of HSIDEMO.EXE
HSIDCMD.C source of HSIDEMO.EXE
HSIDUTIL.C source of HSIDEMO.EXE
HSIDCFG.C source of HSIDEMO.EXE
GETOPT.C source of command line option scanner
PCALDR.C source of loader routine
PCACMD.H HSI-24 command codes
HSIDEMO.MAK "make" file for hsidemo
HSIDEMO.LNK linker script for HSIDEMO.EXE
BARS40H.OBJ object code for 40 bars

Files Not on Diskette

Probe Products Corporation has versions of the HSI-24 communications functions which
are for use with BASIC and PASCAL. These files are available free upon request.

Probe Products Corporation has a full featured data collection and SPC display program
called EasyMeasure. The EasyMeasure software supports interacive data collection and
charting with EGA/VGA graphics. Call for a free demonstration disk and pricing informa-
tion.

Several commercial suppliers of SPC software have integrated support for the HSI-24
into their software products. Call Probe Products Corporation or your SPC software ven-
dor to inquire about support for the HSI-24.

The HSI-24, an Overview 4

HSIDEMO Application/Setup Program

General Description

HSIDEMO.EXE is a program which demonstrates many of the features of the HSI-24. It
is an easy way to evaluate the functions of the HSI-24 without writing any software. The
source code is included as a guide to writers of specialized application software using the
HSI-24. The file HSICOMM.C includes functions which are callable from such applica-
tion software and should be used as a foundation for communication with the HSI-24.

The program HSIDEMO.EXE will construct up to 96 ’channels’ of input-derived data,
using from one to four HSI-24 systems. The channels may be viewed eight at a time in
tabular form, or up to forty total across the screen of a CGA/EGA/VGA or Hercules
monitor in bargraph form. In tabular form the left and right arrow keys shift the channel
display window.

A channel is defined using a formula which may be any combination of transducers, ana-
log inputs, functions, arithmetic operators or other channels. The functions provided in-
clude MAX HOLD, MIN HOLD, TIR, SINE, COSINE, ARCTANGENT, etc. A channel
may be offset by any amount to produce readings that correspond to actual part dimen-
sions in any convenient engineering units, or deviation from zero.

The MAX, MIN, and TIR functions are periodically recomputed. The scanning time for
this computation is programmable. The scanning may also be stopped to allow the read-
ings to be frozen.

Both transducer and analog inputs may be assigned an offset and full scale value. The
offset is used as a zeroing aid. The full scale value sets the output of the transducers and
analogs to the desired engineering units.

Normally a channel value is computed when the HSI-24 receives a request for that chan-
nel. Certain functions (MAX, MIN and TIR) are periodically computed.

*PLEASE NOTE: Although the term "LVDT" is used within commands in this docu-
ment, many other transducers may be used with the HSI-24. Should half-bridge and
LVDT transducers be mixed within a system, the sensitivity of all units may be matched
for compatibility. Also, many strain gauges, and most potentiometric transducers can be
operated with AC excitation, so those types may also be used. Contact PROBE PROD-
UCTS CORPORATION for suggestions on specific applications.

HSIDEMO Application/Setup Program 5

Data Logging/Printing

There are two methods of causing data to be logged. The F1 key can be used at any time
to log readings or a timer can be set up to periodically store readings at a selectable rate.
The radings can be stored to a file, the printer or both.
If the /F was not used during startup and F1 is pressed, HSIDEMO will store the data to
the file named default.dat.. The F1 key will store the values of each channel which is de-
fined by a formula. The channels are stored in the file in ascending channel number or-
der. Note that HSIDEMO should be terminated with the Q command before system
shutdown to ensure that the latest data from the buffer is fully written into the output file.

CAL40B.CFG Setup File

The CAL40B.CFG setup file performs the following:
Defines 40 channels with transducer inputs 1 to 24
Sets FSV on all 24 transducers to .040
Sets bar graph scales on all 24 bars to .040
Sets over limit on all 24 bars to .030
Sets high approach on all 24 bars to .020
Sets low approach on all 24 bars to -.020
Sets under limit on all 24 bars to -.030
Sets scan time to 1000. (100 milliseconds)
Enables scanning

HSIDEMO Default Setup

If no configuration file is loaded the defaults are:
No channel definitions
Zero offset on all 96 channels is 0
FSV on all 96 transducers is .020
Zero offset on all 96 transducers is 0
FSV on all 16 analog inputs is 1.00
Zero offset all 16 analog inputs is 0
Scale on all bars is .020
Over limit on all bars is .018
High approach on all bars is .015
Low approach on all bars is -.015
Under limit on all bars is -.018
Scan time is 100 (10 milliseconds)
Scanning enabled

HSIDEMO Application/Setup Program 6

HSIDEMO Startup Options

HSIDEMO has the following command line options:
/a sets an alternate I/O address for the HSI-24
/f sets the filename for both timed and F1 key file storage.
/s loads the setup file named immediately after the option.

HSIDEMO Menu 1

The following keys are active in Menu 1:
escape Switch to menu 2.
Q Stops the program and returns to DOS
R Resets max, min and run-out readings
C Save/Load of subsystem configuration
F Define channel formula
T Set scanning time
E Clear all channel formulae
S Turn scanning on/off
D Enables display of diagnostic data to/from the HSI-24
Z Sets bargraph scale
B Displays bargraphs
L Sets bargraph limits
I Sets number of decimal places
P Printing/File setup for timed measurements

HSIDEMO Menu 2

The following keys are active in Menu 2:
escape Switch to menu 1.
1 Set zero offset for a transducer.*
2 Auto zero one or all transducers.
3 Remove zero offsets for one or all transducers.
4 Set transducer full scale value.
5 Set zero offset for an analog input.*
6 Auto zero on or alle analog inputs.
7 Remove zero offsets for one or all analog inputs.
8 Set full scale value for an analog input.
9 Set number of readings to average.
0 Set length of running average filter.
M Set multiplexor settling time. (Used for production test only)
A Set zero offset for a channel*.
B Auto zero one or all channels.
C Remove zero offsets for one or all channels.
R Resets max, min and runout readings

*NOTE: These functions can be used to display actual sizes rather than deviation-from-
zero.

HSIDEMO Application/Setup Program 7

HSIDEMO Channel Scrolling Keys

The following keys are active in both Menu 1 and Menu 2:
down-arrow Displays next lower channel.
left-arrow Displays next lower channel.
up-arrow Displays next higher channel.
right-arrow Displays next higher channel.
page-down Displays next lower 8 channels.
page-up Displays next higher 8 channels.
home Displays channels 1 to 8.
end Displays channels 89 to 96.
F1 Stores/prints channel values
escape Toggles between menu 1 and menu 2

HSIDEMO Bar Graphs

The bar graphs display the current values of up to 40 channels. A CGA monitor will dis-
play green, yellow and red bars depending on how the displayed value relates to the limit
points, while a Hercules-type monitor will (obviously) display monochrome bars. Each
bar has an independent scaling factor, over limit, high approach limit, low approach limit
and under limit.

The bars are displayed from menu 1 with the B command. To return to menu 1 use the es-
cape key. While the bars are displayed the F1 key (store data to file), R key (reset
MAX/MIN/TIR) and S key (start/stop scanning) may be used. The F1 key will not dis-
play a warning message if no data output file was defined and F1 is used while the bars
are displayed. No harm is done in this case, except the data will not be stored.

The scaling factor for the bars is set via the menu 1 Z command. The scaling factor for
each bar graph may be set independently of the other bar graphs. The scaling factor
would normally be set to the FSV of the formula which defines the channel for the bar.

Example 1: If Channel 1 = T1 and the FSV of T1 is .04 inches, set the scale for bar 1 to
.04.

Example 2: If Channel 1 = T1+T2 the FSV of T1 is .04 inches and the FSV of T2 is .04
inches, set the scale for bar 1 to .08.

Other scaling factors may be used as desired for applications not requiring full transducer
stroke.

The limit values for the bars are set via the menu 1 L command. The limits for each bar
graph may be set independently of the other bar graphs. There are four limits associated
with each bar graph; over limit, high approach, low approach and under limit. The over
limit and high approach must be zero or greater. The under limit and low approach must
be zero or less (negative values). In addition the limit values must satisfy "over limit =
high approach = low approach = under limit". If the limit values do not satisfy this rela-
tionship the B command will display an error message, so if this occurs check all limits to
be sure they all satisfy the above relationship. When using the L command the present
value of the limit is displayed in parentheses. If you do not wish to change the displayed
value hit the Enter key without typing a new value.

HSIDEMO Application/Setup Program 8

If, on a CGA monitor, you want the bars to display only green and red (no approach lim-
its in yellow), set the over limit and the high approach limit to the same value. This
causes the approach region to be skipped. The same idea can be used for the under and
low approach limits.

The bar graph display will only display as many bars as there are channels defined. It will
never display more than 40 bars due to screen width limitations. The bar graph display
will stop at the first channel which has no formula.

HSIDEMO Application/Setup Program 9

Software Interface

Overview

The file HSICOMM.C contains three levels of HSI-24 communication functions. Each
level is constructed using components from lower levels. The top (and easiest to use)
level implements HSI-24 commands. The middle level implements block I/O functions
with the HSI-24. The lowest level implements single character I/O functions with the
HSI-24.

To use the HSI-24 it is only necessary to understand the top level functions. The descrip-
tions of the middle and low level functions can be skipped.

Gaging Application

Top Level Functions

Middle Level Protocol Functions

Low Level I/O Functions

Resident in PC

HSI-24 Firmware

Resident in HSI-24

Software Interface 10

Top Level Communication Functions

The top level of functions contains one function for each of the HSI-24 commands.
To use the functions in the top level, call the function with its arguments. The function
will issue the proper command code and arguments to the HSI-24. The function will re-
turn the HSI-24’s response.

Status Code

All HSI-24 functions return a status code which indicates the success or failure of the
command execution. The status code is returned as the value of the function. The func-
tions that return values in addition to the status code require arguments which are a
pointer to a place to put the returned value.
The following rules pertain to all top level functions:
All functions return an integer which will be:
zero If the command was completed successfully.
-1 If the low level routines were unable to communicate.
+value If the command was not executable. (see status codes)

General Arguments

When functions require a channel number as an argument the channel number must be be-
tween 1 and 96.
When functions require an transducer number as an argument the transducer number
must be between 1 and 96. (Transducer numbers greater than 24 will be accepted but are
only meaningful if slave HSI-24s are installed.)
When functions require an analog number as an argument the analog number must be be-
tween 1 and 16. (Analog numbers greater than 4 will be accepted but are only meaningful
if slave HSI-24s are installed.)

General Return Values

All functions return the status as the function return value. When other values must be re-
turned the calling routine must supply a pointer to a variable which will have the return
value stored into it.

Floating Point Arguments

When a function requires a floating point value, the value supplied is dependent on the
condition of the floating point input mode. If the floating point input mode is set to the
value FP_IMODE_NATIVE (see file PCACMD.H), then the number must be a single
precision number in 8087 format. If the floating point input mode is set to the value
FP_IMODE_ASCII then the number must be an ASCII string which represents the value.
In the ASCII mode the conversion will terminate when an invalid character is detected.
The string ’ABC’ will produce a value of ’0.0’. Scientific notation is not allowed.

Software Interface 11

Floating Point Return Values

When a function returns a floating point value, the value returned is dependent on the
condition of the floating point output mode. If the floating point output mode is set to the
value FP_OMODE_NATIVE, then the number will be a single precision number in 8087
format. If the FLOATING POINT OUTPUT MODE is set to the value FP_OMODE_AS-
CII, then the number will be an ASCII string which represents the value. The number of
decimal places in ASCII output mode is controlled by an HSI-24 command.
Important Note. The functions designed for IEEE floats move the floating point number
to the variable pointed to by the argument. The functions designed for ASCII floats only
set the passed pointer to point to the result string. The result string still located in the re-
ceive buffer. If you want to save the result string you must copy it out of the buffer before
another HSI-24 function is called.

Funtion hsicomm_init

int hsicomm_init(unsigned hsi_base)
This function must be the first function called before any of the other functions in HSI-
COMM.C are used. The call hsicomm_init(0xffff) will set the port address to the default
value. The argument can be set to other values, but the address jumpers on the board
must be changed to reflect the value which is used. This function will return 0 if the port
address is an allowable value.

Function set_diag

int set_diag(int diag)
This function will enable the diagnostic display of communicated data if called with a
non-zero argument. It will only enable the diagnostics if HSICOMM.C was compiled
with ’HSI-DIAG’ TRUE. It does not return any value.

Function start_scan

int start_scan()
This function enables the scanning of formulae which contain MAX, MIN or TIR func-
tions. Returns status.

Function stop_scan

int stop_scan()
This function disables the scanning of formulae which contain MAX, MIN or TIR func-
tions. The functions will be unaffected by changes in their arguments. Returns status.

Function define_channel

int define_channel(int channel, char *formula)
This function will define a formula for a channel. The formula argument is a pointer to a
string which contains a valid formula. See the description of formulae for details of al-
lowed formats, etc. Returns status.

Software Interface 12

Function read_formula

int read_formula(int channel, char **formula)
This function will set the pointer formula to point to the ASCIIZ string which is the for-
mula for the specified channel. Note that this function does not copy the string to a
destination string. The formula string is located in the receive buffer. Returns status.

Function clear_channels

int clear_channels()
This function will erase the formulae for all channels. Returns status.

Function clear_channel

int clear_channel(int channel)
This function will erase the formula for one channel. Returns status.

Function read_channel

int read_channel(int channel, float *cvalue)
Reads the value of a channel and places the result in the location pointed to by cvalue. Re-
turns status.

Function set_czero

int set_czero(int channel, float *czero)
This function sets the channel offset for a channel. The channel offset is added to the
channel value when the read_channel function is used and when the channel is used in a
formula for another channel. Returns status.

Function read_czero

int read_czero(int channel, float *czero)
Reads the current zero offset for a channel. Returns status.

Function reset_mm

int reset_mm()
Resets all MIN, MAX and TIR functions. Returns status.

Function read_lvdt

int read_lvdt(int lvdt, float *tvalue)
Reads the current value of a transducer. Returns status.

Function set_tfsv

int set_tfsv(int lvdt, float *tfsv)
Sets the full scale value for a transducer. Returns status.

Software Interface 13

Function read_tfsv

int read_tfsv(int lvdt, float *tfsv)
Reads the current full scale value for a transducer. Returns status.

Function set_tzero

int set_tzero(int lvdt, float *tzero)
Sets the zero offset for a transducer. The zero offset is added to the transducer value
when the read-transducer function is used and also when the transducer is used in a for-
mula. Returns status.

Function read_tzero

int read_tzero(int lvdt, float *tzero)
Reads the current zero offset for a transducer. Returns status.

Function read_analog

int read_analog(int analog, float *avalue)
Reads the current value of an analog input. Returns status.

Function set_afsv

int set_afsv(int analog, float *afsv)
Sets the full scale value of an analog input. Returns status.

Function read_afsv

int read_afsv(int analog, float *afsv)
Reads the current full scale value for an analog input. Returns status.

Function set_azero

int set_azero(int analog, float *azero)
Sets the zero offset for an analog input. The zero offset is added to the analog input value
when the read_analog function is used or when the analog input is used in a formula. Re-
turns status.

Function read_azero

int read_azero(int analog, float *azero)
Reads the current zero offset for an analog input. Returns status.

Function reada_channel

int reada_channel(int channel, char **value)
Same as read_channel except value is returned pointing to an ASCIIZ string. Returns
status.

Software Interface 14

Function seta_czero

int seta_czero(int channel, char *czero)
Same as set_czero function except czero is a pointer to an ASCIIZ string. Returns status.

Function reada_czero

int reada_czero(int channel, char **czero)
Same as read_czero function except czero is returned pointing to an ASCIIZ string. Re-
turns status.

Function reada_lvdt

int reada_lvdt(int lvdt, char **value)
Same as read_lvdt function except value is returned pointing to an ASCIIZ string. Re-
turns status.

Function seta_tfsv

int seta_tfsv(int lvdt, char *tfsv)
Same as set_tfsv function except tfsv is a pointer to an ASCIIZ string. Returns status.

Function reada_tfsv

int reada_tfsv(int lvdt, char **tfsv)
Same as read_tfsv function except tfsv is returned pointing to an ASCIIZ string. Returns
status.

Function seta_tzero

int seta_tzero(int lvdt, char *tzero)
Same as set_tzero function except tzero is a pointer to an ASCIIZ string. Returns status.

Function reada_tzero

int reada_tzero(int lvdt, char **tzero)
Same as read_tzero function except tzero is returned pointing to an ASCIIZ string. Re-
turns status.

Function reada_analog

int reada_analog(int analog, char **value)
Same as read_analog function except value is returned pointing to an ASCIIZ string. Re-
turns status.

Function seta_afsv

int seta_afsv(int analog, char *afsv)
Same as set_afsv function except afsv is a pointer to an ASCIIZ string. Returns status.

Software Interface 15

Function reada_afsv

int reada_afsv(int analog, char **afsv)
Same as read_afsv function except afsv is returned pointing to an ASCIIZ string. Returns
status.

Function seta_azero

int seta_azero(int analog, char *azero)
Same as set_azero function except azero is a pointer to an ASCIIZ format floating point.
Returns status.

Function reada_azero

int reada_azero(int analog, char **azero)
Same as read_azero function except azero is returned pointing to an ASCIIZ string. Re-
turns status.

Function set_scan_time

int set_scan_time(int time)
Sets scanning period for MAX, MIN and TIR functions. The argument ’time’ is in units
of tenth’s of milliseconds. Returns status.

Function get_scan_time

int get_scan_time(int *time)
Sets time to point to current scanner period. Returns status.

Function set_fp_in

int set_fp_in(int format_code)
Sets floating point input mode. The allowed values for format_code are:
FP_IMODE_NATIVE IEEE single precision floats(8087 format)
FP_IMODE_ASCII ASCIIZ strings
FP_IMODE_MSFP Microsoft fp format (used in Basic)
These values for format_code are defined in file PCACMD.H. Returns status.

Function get_fp_in

int get_fp_in(int *format_code)
Sets format_code to point to current fp input format. Returns status.

Function set_fp_out

int set_fp_out(int format_code)
Sets the floating point output mode. The allowed values for format_code are:
FP_OMODE_NATIVE IEEE single precision floats(8087 format)
FP_OMODE_ASCII ASCIIZ strings
FP_OMODE_MSFP Microsoft fp format (used in Basic)
These values for format_code are defined in file PCACMD.H. Returns status.

Software Interface 16

Function get_fp_out

int get_fp_out(int *format_code)
Returns format_code pointing to current fp output format. Returns status.

Function set_fp_prec

int set_fp_prec(int precision)
Sets the number of decimal places for floating point numbers when the floating point out-
put mode is ASCII. Numbers are rounded to the specified number of decimal places. The
allowed values for the argument precision are between 1 and 6. Returns status.

Function get_fp_prec

int get_fp_prec(int *precision)
Returns precision pointing to current fp precision. Returns status.

Function get_scan_flag

int get_scan_flag(int *scanflag)
Returns scanflag pointing to current scan flag. Returns status.

Function set_mux_time

int set_mux_time(unsigned mtime)
Sets the analog multiplexor delay constant. Returns status..

Function get_mux_time

int get_mux_time(unsigned *mtime)
Returns mtime pointing to current mux settling time. Returns status.

Function read_direct

int read_direct(int lvdt_count,unsigned char *lvdt_list,int **values)
int lvdt_count is the number of lvdt’s to be read by this call.
unsigned char *lvdt_list is a pointer to a list of the lvdt numbers which are to be read by
this call. The lvdt numbers are 8 bit integers starting at "0" through "23" for the first HSI-
24, "24" through "47" for the second HSI-24, etc. The first four DC inputs are "96"
through "99", the next four DC inputs are "100" through "103", etc.
int **values is a pointer to an integer pointer. The function will set the supplied integer
pointer to address the list of returned integers. Each of the returned integers will be in the
range of -8192 to +8191.
The function returns status.

Software Interface 17

Middle Level Functions

The middle level consistes of two functions: send_command and get_response.
All communication with the HSI-24 is done through the writing and reading of blocks of
data. Communication is always initiated from the host (IBM-PC) side. The slave (HSI-
24) always responds with a command completion status.

Blocks to HSI-24

The PC to HSI-24 blocks have the following structure:

byte 1 3Ah (ASCII ’:’) -- this is the ’host prefix character’.

byte 2 command number -- the command that the HSI-24 is to execute.

byte 3 data count -- count of the number of data bytes which follow. A count of 0 is inter-
preted as a count of 256. Up to 256 data bytes follow.

byte 4 data -- The first data byte. Note that at least one data byte must be sent.

byte N data -- last data byte.

Blocks from HSI-24

The HSI-24 to PC blocks have the following structure :

byte 1 3Bh (ASCII ’;’) -- this is the ’slave prefix character’.

byte 2 status -- the command completion status.

byte 3 data count -- count of the number of data bytes which follow. A count of 0 is inter-
preted as a count of 256. Up to 256 data bytes follow.

byte 4 data -- The first data byte. Note that at least one data byte will be sent.

byte N data -- last data byte.

The HSI-24 will always respond with a block that has as a minimum ’prefix’, ’status’,
count of 01, dummy data byte 00.

After a block is written to the HSI-24 the PC must wait for the response from the HSI-24.
When the HSI-24 is ready to respond it will set the ’SREQ’ flag bit. The PC resets the
’SREQ’ flag and reads a block from the HSI-24.

Software Interface 18

Function send_command

int send_command(char command, int count, char *data_buffer)
char command - This is the command code to the HSI-24. The code must be one of the
codes defined in the file ’PCACMD.H’. Any other code will cause a returned status
meaning invalid command.
int count - This is the number of characters to be sent to the HSI-24. When sending
strings to the HSI-24 (such as formulae) the count must include the 0(NULL) which ter-
minates the string.
char *data_buffer - This is a pointer to the data that will be sent to the HSI-24.

Function get_response

int get_response(int *psize, char *data_buffer)
int *psize - This is a pointer to an integer variable which will be filled in with the number
of characters received from the HSI-24. This count does not include the ’slave prefix’ or
the ’status code’.
char *data_buffer - This is a pointer to a buffer which will be filled with the data received
from the HSI-24.
Return value from get_response is the ’status code’ from the HSI-24. This code indicates
the success (or failure) of the command.

HSI-24 Timeout

Both send_command and get_response functions will return a -1(0xffff) if the lower level
communication functions cannot communicate with the HSI-24 in a ’reasonable length of
time’. The length of a reasonable length of time is set by the ’#define CMD_TIME’ state-
ment.

Software Interface 19

Low Level Functions

The three low level functions are responsible for the actual transfer of data between the
PC and the HSI-24.

Function pbyte

int pbyte(unsigned char data)
Writes the argument data byte to the HSI-24. Returns 0 if successful. Returns -1 (0xffff)
if HSI-24 does not indicate ’ready for data’ within a reasonable amount of time.

Function gbyte

int gbyte()
Reads one data byte from the HSI-24. Returns the data byte read, if successful. Returns -
1 (0xffff) if HSI-24 does not indicate ’data ready’ within a reasonable amount of time.

Function xfer

int xfer()
The xfer function waits for an HSI-24 command to complete. Returns 0 if successful. Re-
turns -1 (0xffff) if HSI-24 does not indicate ’complete’ within a reasonable amount of
time.

Software Interface 20

Customization of hsicomm.c

The file HSICOMM.C contains several #define variables which can be used to customize
some of the characteristics of the functions produced.

FP_NATIVE - Set to TRUE if you are using 8087 format fp numbers.

FP_ASCII - Set to TRUE if you are using ASCII format fp numbers.

CMD_TIME - This sets the length of time the low level I/O routines will wait before
reporting a time-out error. The HSI-24 will respond to commands within several millisec-
onds (for a channel with a complex formula) and several hundred microseconds for a sim-
ple formula. The response time is about 400 microseconds per operation.

HSI_DIAG - Set TRUE to include code which will display communicate data.

ROW_FOR_DIAG - CRT row where diagnostic data is displayed.

COL_FOR_DIAG - CRT column where diagnostic data is displayed.

HSI_STAT - Set TRUE to include code which will display non-zero status bytes.

ROW_FOR_STAT - CRT row where status will be displayed.

COL_FOR_STAT - CRT column where status will be displayed.

(Note: the diagnostic and status display code use a cursor locating routine which you
must supply if you use these options.)

Software Interface 21

HSI-24 Formula Syntax

When a channel is read, its value is computed by a formula supplied to the HSI-24 by the
host software. The formulae are supplied to the HSI-24 in the form of an ASCII string ter-
minated by a null byte. Formulae are constructed in much the same way as they are in as-
signment statements in programming languages such as BASIC.

Formulae consist of combinations of functions, operators, constants, input terms and
channel terms.

Peak Hold Functions

MAX returns the largest value it sees as an argument while scanning.
MIN returns the smallest value it sees as an argument while scanning.
TIR returns MAX-MIN.
The MAX, MIN and TIR functions continue to be scanned although the channel which
uses them is not being read by the host software. They will ’freeze’ at their current value
if scanning is disabled. The scanning is controlled by the functions start_scan and
stop_scan. The period of scanning is set by the set_scan_time function. They are reset by
the reset_mm function.

Mathematical Functions

ABS returns the absolute value of the argument.
ACOS returns the arc-cosine of the argument. Result in radians.
ASIN returns the arc-sine of the argument. Result in radians.
ATAN returns the arctangent of the argument. Result in radians.
COS returns the cosine of the argument. Argument in radians.
GOF returns the greatest (most positive) of the argument list.
GOR returns the greatest (most positive) of the range set by the argument list.
LOF returns the least (most negative) of the argument list.
LOR returns the least (most negative) of the range set by the argument list.
SIN returns the sine of the argument. Argument in radians.
SQRT returns the square root of the argument.
SQR returns the argument multiplied by itself.
TAN returns the tangent of the argument. Argument in radians.

Miscellaneous Functions

PI2 has the value 3.141592654/2.0
PI has the value 3.141592654
RAD returns the argument converted from degrees to radians.
DEG returns the argument converted from radians to degrees.
(and) are allowed to impose computaion order.

Software Interface 22

Mathematical Operators

^ exponeniation
* multiplication.
/ division. (division by zero returns zero
+ addition.
- subtraction.

Constants

Constants in formulae are specified as ASCII strings. Scientific notation is not allowed
for constants, (i.e., ’.125’ is allowed, ’1.25E-01’ is not allowed).

Input Terms

Tn returns the value of transducer number n. The number n must be in the range 1 to 96.
The HSI-24 will read the transducer, multiply by the transducer full scale value and add
the transducer offset. Each transducer has an individual full scale value and offset.
An causes the value of analog number n to be returned. The number n must be in the
range 1 to 16. The HSI-24 will read the analog input, multiply by the analog full scale
value and add the analog offset. Each analog input has an individual full scale value and
offset.

Channel Terms

Cn returns the value of channel number n. The number n must be in the range 1 to 96.
The HSI-24 will compute the value of channel nn, multiply by the channel full scale
value and add the channel offset. Each channel has an individual full scale value and off-
set. Circular references to channels are not allowed and will cause the HSI-24 to return an
error code.

Example Formulae

T1
T1+T2
MAX(T2-T1)
(T1+T2+T3)/3
1.0034*(T1+T2)
(MAX(T1)+MIN(T1))/2
GOF(T1,T2,T3) returns the greatest of T1, T2 and T3.
LOF(T1,T2,T3,T4) returns the least of T1, T2, T3 and T4.
GOR(T1,T8) returns the greatest of T1,T2,T3,T4,T5,T6,T7 and T8.
LOR(C9,C13) returns the least of C9,C10,C11,C12 and C13.

Software Interface 23

HSI-24 Command Codes

Below are listed all of the mneumonics and their values for the HSI-24 commands. This
information was derived from the contents of the file PCACMD.H. Although none of the
values will change, additional command codes may have been added. Check the contents
of the PCACMD.H file included with the HSI-24 to see if any new commands have been
added.

C_NOP 0 Dummy command.
C_READ_MEM 1 Read 80186 memory block.
C_DIRECT_ADC 2 Read A/D directly.
C_CHAN_DEFINE 3 Define channel formula.
C_CHAN_READ 4 Read channel.
C_CHAN_CLR_ALL 5 Erase all channel formulae.
C_CHAN_CLR 6 Erase specified channel formula.
C_CHAN_SCAN_ON 7 Start scanning.
C_CHAN_SCAN_OFF 8 Stop scanning.
C_CHAN_RESET_MM 9 Reset max/min nodes.
C_SET_SCAN_TIME 10 Set scanner period.
C_LVDT_READ 11 Read lvdt transducer.
C_ANALOG_READ 12 Read analog transducer.
C_CHAN_FORM 13 Read back channel formula.
C_TFSV_SET 21 Set probe full scale values.
C_TFSV_READ 22 Read probe full scale values.
C_AFSV_SET 23 Set analog full scale values.
C_AFSV_READ 24 Read analog full scale values.
C_TZERO_SET 32 Set probe offset values.
C_TZERO_READ 33 Read probe offset values.
C_AZERO_SET 42 Set analog offset values.
C_AZERO_READ 43 Read analog offset values.
C_CZERO_SET 52 Set channel offset value.
C_CZERO_READ 53 Read channel offset value.
C_CSCALE_SET 54 Set channel scaling value.
C_CSCALE_READ 55 Read channel scaling value.
C_SET_FP_IMODE 80 Select fp input format.
Allowed modes:
FP_OMODE_NATIVE 0 IEEE single precision floats.
FP_OMODE_ASCII 1 ASCII strings.
FP_OMODE_MSFP 2 Microsoft fp format (used in Basic).
C_SET_FP_OMODE 81 Select fp output format.
Allowed modes:
FP_IMODE_NATIVE 0 IEEE single precision floats.
FP_IMODE_ASCII 1 ASCII strings.
FP_IMODE_MSFP 2 Microsoft fp format (used in Basic).
C_SET_MUX_TIME 82 Set mux settling time.
C_SET_FP_PREC 83 Set fp precision.
C_GET_FP_IMODE 84 Return current fp input format.
C_GET_FP_OMODE 85 Return current fp output format.

Software Interface 24

C_GET_MUX_TIME 86 Return current mux settling time.
C_GET_FP_PREC 87 Return current fp precision.
C_GET_SCAN_FLAG 88 Return scan flag.
C_GET_SCAN_TIME 89 Return scanner period.
C_SET_ADC_AVG 90 Set adc averaging quantity.

Software Interface 25

Startup Settings

Immediately after loading the HSI-24 firmware the following settings will be valid.
All 96 channel scale factors are set to 1.
All 96 channel zero offsets are set to zero.
All 96 transducer full scale values are set to .08.
All 96 transcducer zero offsets are set to zero.
The first 4 analog full scale values are set to 1.
The remaining 12 analog full scale values are set to zero. (Although these are accessible
they are physically located on slave boards.
All 16 analog zero offsets are set to zero.
The floating point input and output modes are both set to the native (IEEE) mode.

Software Interface 26

Error Codes

0 Normal return which means the command was acceptable.

1 An invalid command or parameter was entered.

2 thru 9 are reserved.

When defining channels the following error codes may be returned. They may be used to
help determine the part of the formula which is causing the problem.

10 An invalid channel number was entered.

11 Internal error..

12 Invalid opcode mneumonic. A built-in function name has been improperly typed in. If
"SINE(T4)" is entered instead of "SIN(T4)" or "T1+S3" instead of "T1+T3".

13 Not enough operands for operator. If "T1+" is entered the HSI-24 cannot determine
what value to add to T1. If "SIN()" is entered the HSI-24 cannot determine what value to
use as the argument of the sine function.

14 Node table full. The HSI-24 reduces the entered formulae into a form which can be
quickly computed when required. The reduced formulae are stored in a table which has a
predetermined size. When the table is filled this error is returned. If this error occurs, the
number or the complexity of the entered formulae must be reduced.

Determining the number of node entries in the node table that a particular formula con-
sumes is difficult due to certain optimizations which the HSI-24 applies during the for-
mula reduction process. The following guidelines will allow determining the maximum
number of nodes which a given formula will consume.
1. Each constant consumes one node. The formula ".0023" consumes one node.
2. Each function use consumes one node for the function. Additional nodes will be con-
sumed for the function’s arguments. The formula "SIN(.0023)" consumes one node for
the SIN function plus one node (Rule 1) for the constant .0023, for a total of 2 nodes. The
TIR function is a special case which consumes 2 nodes just for the function plus the addi-
tional nodes for the function arguments. The formula "TIR(.0023)" consumes 2 nodes for
the TIR function and 1 node for the constant, for a total of 3 nodes.
3. Arithmetic operators (+ - * /) consume one node. The formula "1 + 2 + 3" consumes 1
node for each of the "+" operators plus 1 node for each of the constants (Rule 1), for a to-
tal of 5 nodes.
4. Channel references consume one node. The formula "C1" consumes 1 node.
5. Transducers and analog inputs consume one node. The formula "T1" consumes 1 node.
The formula "T1 + T2" consumes 1 node for each of the transducers plus 1 node for the
"+" operator (Rule 3), for a total of 3 nodes. The first appearance of a transducer in a for-
mula consumes 1 node however subsequent appearances of the same transducer in any
formula do not consume additional nodes.
 Channel 1 is "T1+T2". This uses 3 nodes.
 Channel 2 is "T1+T3". This uses 2 nodes. T1 has already been allocated a node by the
channel 1 formula.

Software Interface 27

The total number of nodes available is 400 in firmware version ’PCA10.BIN’.
The HSI-24 cannot conserve nodes by recognising common subexpressions in formulae.
Node table space can be conserved by defining a channel with the subexpression and
then referencing that channel in the formulae which need the subexpression value.

Channel 1 is "T5 - (T1 + T2 + T3 + T4)". (9 nodes)
Channel 2 is "T6 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 3 is "T7 - (T1 + T2 + T3 + T4)". (5 nodes)
Channel 4 is "T8 - (T1 + T2 + T3 + T4)". (5 nodes)
For a total of 9+5+5+5 or 24 nodes.

Alternately define channel 50 with the subexpression and use channel 50 in place of the
subexpression:
 Channel 50 is "T1 + T2 + T3 + T4". (7 nodes)
 Channel 1 is "T5 - C50". (3 nodes)
 Channel 2 is "T6 - C50". (3 nodes)
 Channel 3 is "T7 - C50". (3 nodes)
 Channel 4 is "T8 - C50". (3 nodes)
For a total of 7+3+3+3 or 16 nodes.

15 Bad transducer or analog input number. If a formula contains "T175" or "A32". The
highest transducer number allowed is "T96". The highest analog input number allowed is
"A16". Note: Although the HSI-24 accepts transducer numbers up to 96 the slave HSI-
24’s must be present for these to produce any meaningful measurements.
16 Too many operands for operator. If "T1 + T2 T3" is entered, the HSI-24 cannot
determine what to do with the T3 part of the formula.
17 Bad numeric value in expression. When entering constants in a formula "scientific no-
tation" is not allowed. In some computer languages the value .0015 may be entered as
"1.5E-3". The HSI-24 requires that the value be entered as ".0015".
18 Bad token. An invalid symbol was entered.
19 Formula too complex to parse. This error occurs when a formula has more levels of pa-
renthesis than the HSI-24 can handle
20 Recursive channel definition. This error occurs when channels reference each other in
a circular fashion.
 Channel 1 has the formula "T1+T2-C2".
 Channel 2 has the formula "T3+C1".
To determine the value of channel 1 the HSI-24 must first determine the value of channel
2, which is dependent on the value of channel 1.
21 No memory left to allocate. Besides storing the formulae in a reduced form (as de-
scribed under error 14), the original text of the formula is also saved within the HSI-24
memory. The formula text is stored in a memory pool along with other items which are
necessary during formula entry. Should this pool of memory become filled this error is is-
sued.
22 General formula error. The formula scanner in the HSI-24 will issue this error when
the formula is bad and no other formula error codes apply.

Software Interface 28

HSI-24 HARDWARE

The HSI-24 coprocessing subsystem has four major components:

1 to 4 -SYSTEM BOARD containing all active circuitry. This board resides within the
host computer.

1 to 4 -CABLE ASSEMBLY for connecting the system board to the junction box. This
is a 100 conductor cable assembly--please exercise caution when connecting, to avoid
damaging the small pins in the connectors.

1 to 4 -JUNCTION BOX, with 25 DIN connectors, 24 of which are for transducers and
one for the four +/-5V DC inputs.

1 -SOFTWARE DISKETTE.

Changing the I/O Address

The HSI-24 subsystem uses four I/O channel addresses on the PC I/O channel. As
shipped, the subsystem uses addresses 0x0310 through 0x0313. IBM has assigned these
addresses to what they call the "prototype board". In the event of an address conflict with
another adapter, the address of the HSI-24 can be changed to one of four preset ad-
dresses. There are two pairs of jumper pads located on the back of the HSI-24/14 board
near the PC bus connector. The jumpers are labelled JP1A and JP1B. Each jumper pair
has a small trace running between its pads. This jumper must be cut to open the jumper.
If the trace is already cut a small wire must be soldered across the pads to close the
jumper. The table below shows the I/O address selected for all four combinations of
jumpers.

 J1A J1B I/O Address
Closed Closed 0310 Hex
Closed Open 0308 Hex
Open Closed 0318 Hex
Open Open 02A0 Hex

It is unlikely that you will have to change the I/O address, but it may be necessary if you
have an IEEE-488 adapter, more than 4 communication adapters, other A/D converter
boards or parallel I/O adapters (other than printer adapters).

HSI-24 HARDWARE 29

Connector Pinout

J2 (transducer Connector) pinout as viewed from rear of PC
top left top right

DC INPUT 1 1 51 DC INPUT 2
T24 +OSC 2 52 T24 SIGNAL
T24 -OSC 3 53 COMMON
T22 +OSC 4 54 T22 SIGNAL
T22 -OSC 5 55 COMMON
T20 +OSC 6 56 T20 SIGNAL
T20 -OSC 7 57 COMMON
T12 -OSC 8 58 T2 SIGNAL
T12 +OSC 9 59 COMMON
T10 -OSC 10 60 T4 SIGNAL
T10 +OSC 11 61 COMMON
T8 -OSC 12 62 T6 SIGNAL
T8 +OSC 13 63 COMMON
T6 -OSC 14 64 T8 SIGNAL
T6 +OSC 15 65 COMMON
T3 -OSC 16 66 T10 SIGNAL
T3 +OSC 17 67 COMMON
T2 -OSC 18 68 T12 SIGNAL
T2 +OSC 19 69 COMMON
T14 +OSC 20 70 T14 SIGNAL
T14 -OSC 21 71 COMMON
T16 +OSC 22 72 T16 SIGNAL
T16 -OSC 23 73 COMMON
T18 +OSC 24 74 T18 SIGNAL
T18 -OSC 25 75 COMMON
T23 +OSC 26 76 T23 SIGNAL
T23 -OSC 27 77 COMMON
T21 +OSC 28 78 T21 SIGNAL
T21 -OSC 29 79 COMMON
T19 +OSC 30 80 T19 SIGNAL
T19 -OSC 31 81 COMMON
T11 -OSC 32 82 T1 SIGNAL
T11 +OSC 33 83 COMMON
T9 -OSC 34 84 T3 SIGNAL
T9 +OSC 35 85 COMMON
T7 -OSC 36 86 T5 SIGNAL
T7 +OSC 37 87 COMMON
T5 -OSC 38 88 T7 SIGNAL
T5 +OSC 39 89 COMMON
T3 -OSC 40 90 T9 SIGNAL
T3 +OSC 41 91 COMMON
T1 -OSC 42 92 T11 SIGNAL
T1 +OSC 43 93 COMMON
T13 +OSC 44 94 T13 SIGNAL
T13 -OSC 45 95 COMMON
T15 +OSC 46 96 T15 SIGNAL
T15 -OSC 47 97 COMMON
T17 +OSC 48 98 T17 SIGNAL
T17 -OSC 49 99 COMMON
DC INPUT 4 50 100 DC INPUT 3

bottom left bottom right
The +OSC and -OSC designations refer to the phase of the oscillator drive signal relative
to the inward-from-null signal from the transducer.

HSI-24 HARDWARE 30

Adjustments

The trimmer pots at the top of the HSI-24 adjust the gain of each transducer signal condi-
tioner independently. The trimmer nearest the rear connector is for channel 1, the next
one is for channel 2, etc. These trimmers allow for adjustment during manufacturing to
correct for part value variations, and may also be field adjusted if necessary.

The trimmer below the heatsinks and next to the large group of brown capacitors is the
phase adjust pot. With the installation of a capacitor this compensates for the phase shift
produced by some transducers. As delivered the phase shift is adjusted to zero.

The trimmer at the middle center of the HSI-24/14 adjust the A/D converter gain. This
should not be changed from factory settings.

The trimmer below the heatsinks near the edge of the HSI-24 sets the pre-regulator volt-
age and should not be changed from factory setting.

HSI-24 HARDWARE 31

